Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Burns ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38641500

RESUMO

OBJECTIVE: Few studies have explored the mental health status of parents of children with burns and the moderating effect of social support on them. METHODS: A survey was performed with parents of 112 burn-injured children at a burn center in China. Their perceived stress, anxiety, depression, sleep quality, and social support were measured by the Chinese Perceived Stress Scale, Hospital Anxiety and Depression Scale, Pittsburgh Sleep Quality Index, and Perceived Social Support Scale. RESULTS: ➀ The prevalence of anxiety (46.43%), depression (52.67%) and poor sleep quality (43.75%) of parents indicated that they experienced emotional and sleep disorders;➁ The perceived stress was positively correlated with sleep quality, anxiety and depression(P<0.01), and negatively correlated with perceived social support (p<0.05); ➂ Social support had a significant moderating effect on their perceived stress and anxiety, depression, but not on their sleep quality. With high social support, parental perceived stress had a significant positive association on anxiety and depression, while with low perceived social support, parental perceived stress had no significant association on anxiety and depression. CONCLUSION: Parents of burned children had increased stress, obvious symptoms of anxiety and depression, and poor sleep quality. Social support had a significant buffering effect on them under low pressure, and high pressure will hinder the buffering effect of social support on stress. Therefore, the ideal services to improve mental health should be provided for them to face different levels of stress.

3.
Arterioscler Thromb Vasc Biol ; 43(12): 2348-2368, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37881938

RESUMO

BACKGROUND: Hemangioblasts are mesoderm-derived multipotent stem cells for differentiation of all hematopoietic and endothelial cells in the circulation system. However, the underlying molecular mechanism is poorly understood. METHODS: CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (type II CRISPR RNA-guided endonuclease) editing was used to develop aggf1-/- and emp2-/- knockout zebra fish. Whole-mount in situ hybridization and transgenic Tg(gata1-EGFP [enhanced green fluorescent protein]), Tg(mpx-EGFP), Tg(rag2-DsRed [discosoma sp. red fluorescent protein]), Tg(cd41-EGFP), Tg(kdrl-EGFP), and Tg(aggf1-/-;kdrl-EGFP) zebra fish were used to examine specification of hemangioblasts and hematopoietic stem and progenitor cells (HSPCs), hematopoiesis, and vascular development. Quantitative real-time polymerase chain reaction and Western blot analyses were used for expression analysis of genes and proteins. RESULTS: Knockout of aggf1 impaired specification of hemangioblasts and HSPCs, hematopoiesis, and vascular development in zebra fish. Expression of npas4l/cloche-the presumed earliest marker for hemangioblast specification-was significantly reduced in aggf1-/- embryos and increased by overexpression of aggf1 in embryos. Overexpression of npas4l rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels in aggf1-/- embryos, placing aggf1 upstream of npas4l in hemangioblast specification. To identify the underlying molecular mechanism, we identified emp2 as a key aggf1 downstream gene. Similar to aggf1, emp2 knockout impaired the specification of hemangioblasts and HSPCs, hematopoiesis, and angiogenesis by increasing the phosphorylation of ERK1/2 (extracellular signal-regulated protein kinase 1/2). Mechanistic studies showed that aggf1 knockdown and knockout significantly decreased the phosphorylated levels of mTOR (mammalian target of rapamycin) and p70 S6K (ribosomal protein S6 kinase), resulting in reduced protein synthesis of Emp2 (epithelial membrane protein 2), whereas mTOR activator MHY1485 (4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine) rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels and reduced Emp2 expression induced by aggf1 knockdown. CONCLUSIONS: These results indicate that aggf1 acts at the top of npas4l and becomes the earliest marker during specification of hemangioblasts. Our data identify a novel signaling axis of Aggf1 (angiogenic factor with G-patch and FHA domain 1)-mTOR-S6K-ERK1/2 for specification of hemangioblasts and HSPCs, primitive and definitive hematopoiesis, and vascular development. Our findings provide important insights into specification of hemangioblasts and HSPCs essential for the development of the circulation system.


Assuntos
Hemangioblastos , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Hemangioblastos/metabolismo , Hematopoese/genética , Mamíferos , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
4.
Lab Chip ; 23(17): 3893, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37492029

RESUMO

Correction for 'Metasurface-enhanced infrared spectroscopy in multiwell format for real-time assaying of live cells' by Steven H. Huang et al., Lab Chip, 2023, 23, 2228-2240, https://doi.org/10.1039/d3lc00017f.

5.
Lab Chip ; 23(9): 2228-2240, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37010356

RESUMO

Fourier transform infrared (FTIR) spectroscopy is a popular technique for the analysis of biological samples, yet its application in characterizing live cells is limited due to the strong attenuation of mid-IR light in water. Special thin flow cells and attenuated total reflection (ATR) FTIR spectroscopy have been used to mitigate this problem, but these techniques are difficult to integrate into a standard cell culture workflow. In this work, we demonstrate that the use of a plasmonic metasurface fabricated on planar substrates and the probing of cellular IR spectra through metasurface-enhanced infrared spectroscopy (MEIRS) can be an effective technique to characterize the IR spectra of live cells in a high-throughput manner. Cells are cultured on metasurfaces integrated with multiwell cell culture chambers and are probed from the bottom using an inverted FTIR micro-spectrometer. To demonstrate the use of MEIRS as a cellular assay, cellular adhesion on metasurfaces with different surface coatings and cellular response to the activation of the protease-activated receptor (PAR) signaling pathway were characterized through the changes in cellular IR spectra.


Assuntos
Técnicas de Cultura de Células , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sobrevivência Celular
6.
Nat Commun ; 14(1): 2265, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081014

RESUMO

Thoracic aortic aneurysm (TAA) is a localized or diffuse dilatation of the thoracic aortas, and causes many sudden deaths each year worldwide. However, there is no effective pharmacologic therapy. Here, we show that AGGF1 effectively blocks TAA-associated arterial inflammation and remodeling in three different mouse models (mice with transverse aortic constriction, Fbn1C1041G/+ mice, and ß-aminopropionitrile-treated mice). AGGF1 expression is reduced in the ascending aortas from the three models and human TAA patients. Aggf1+/- mice and vascular smooth muscle cell (VSMC)-specific Aggf1smcKO knockout mice show aggravated TAA phenotypes. Mechanistically, AGGF1 enhances the interaction between its receptor integrin α7 and latency-associated peptide (LAP)-TGF-ß1, blocks the cleavage of LAP-TGF-ß1 to form mature TGF-ß1, and inhibits Smad2/3 and ERK1/2 phosphorylation in VSMCs. Pirfenidone, a treatment agent for idiopathic pulmonary fibrosis, inhibits TAA-associated vascular inflammation and remodeling in wild type mice, but not in Aggf1+/- mice. In conclusion, we identify an innovative AGGF1 protein therapeutic strategy to block TAA-associated vascular inflammation and remodeling, and show that efficacy of TGF-ß inhibition therapies require AGGF1.


Assuntos
Aneurisma da Aorta Torácica , Fator de Crescimento Transformador beta1 , Humanos , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Sistema de Sinalização das MAP Quinases , Aneurisma da Aorta Torácica/genética , Camundongos Knockout , Inflamação/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas Angiogênicas/genética
7.
Cytokine ; 164: 156142, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804259

RESUMO

AIMS: Studies have confirmed that the IL-23R/IL-17A axis plays an important role in the development of autoimmune and inflammatory diseases. However, its role in coronary artery disease (CAD) remains unclear. Here, we conducted a large sample case-control study to investigate the association between the IL23R/IL17A axis and CAD in the Chinese Han population. METHODS: Two SNPs, rs2275913: G>A (IL17A) and rs6682925: T>C (IL23R), were genotyped in 3042 CAD cases and 3216 controls using the high-resolution melt technology (HRM). Logistic regression analyses were used to adjust the traditional risk factors for CAD and perform the gene interaction analyses. Multiple linear regression analyses were used to study the relationships between the selected SNPs and the levels of serum lipids. In addition, meta-analysis also was performed for the association between rs6682925 and rs2275913 with CAD in different popolations. RESULTS: Our case-control and meta-analysis for single SNPs demonstrated that the frequencies of the alleles and the distribution of the genotypes had no significant differences in CAD cases compared with controls. In the stratified analysis, we observed that the frequency of the IL17A rs2275913-A allele was more epidemic in early-onset CAD than in the controls (Padj = 0.005, OR = 1.209, 95% CI: 1.059-1.382), and the minor allele C of rs6682925 was associated with a decreased level of serum total cholesterol under a recessive model (Padj = 0.011). We demonstrated a significant interaction between rs6682925 and rs2275913 and CAD in the Chinese Han population. Four genotypes (CTGG, CCAA, CCAG, CCGG) were significantly associated with CAD (Padj = 2.94 × 10-4, OR = 0.619, 95% CI: 0.478-0.803; Padj = 0.01, OR = 1.808, 95% CI: 1.152-1.869; Padj = 6 × 10-6, OR = 2.179, 95% CI: 1.558-3.049; Padj = 0.001, OR = 1.883, 95% CI: 1.282-2.762, respectively). CONCLUSION: Our study found no single SNP of rs2275913 in IL17A and rs6682925 in IL23R was associated with CAD in the Chinese population, but the interaction of them were significantly associated with CAD susceptibility, highlighting the key role of the IL-23R/IL-17A axis in the development of CAD. In addition, we also found rs2275913 was associated with early-onset CAD and rs6682925 was associated with total cholesterol levels, which will contribute to the clinical stratified management of this common disease.


Assuntos
Doença da Artéria Coronariana , Interleucina-17 , Humanos , Interleucina-17/genética , Doença da Artéria Coronariana/genética , Estudos de Casos e Controles , Polimorfismo de Nucleotídeo Único/genética , Colesterol , Predisposição Genética para Doença , Receptores de Interleucina/genética
8.
J Cachexia Sarcopenia Muscle ; 14(2): 978-991, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696895

RESUMO

BACKGROUND: Skeletal muscle atrophy is a common condition without a pharmacologic therapy. AGGF1 encodes an angiogenic factor that regulates cell differentiation, proliferation, migration, apoptosis, autophagy and endoplasmic reticulum stress, promotes vasculogenesis and angiogenesis and successfully treats cardiovascular diseases. Here, we report the important role of AGGF1 in the pathogenesis of skeletal muscle atrophy and attenuation of muscle atrophy by AGGF1. METHODS: In vivo studies were carried out in impaired leg muscles from patients with lumbar disc herniation, two mouse models for skeletal muscle atrophy (denervation and cancer cachexia) and heterozygous Aggf1+/- mice. Mouse muscle atrophy phenotypes were characterized by body weight and myotube cross-sectional areas (CSA) using H&E staining and immunostaining for dystrophin. Molecular mechanistic studies include co-immunoprecipitation (Co-IP), western blotting, quantitative real-time PCR analysis and immunostaining analysis. RESULTS: Heterozygous Aggf1+/- mice showed exacerbated phenotypes of reduced muscle mass, myotube CSA, MyHC (myosin heavy chain) and α-actin, increased inflammation (macrophage infiltration), apoptosis and fibrosis after denervation and cachexia. Intramuscular and intraperitoneal injection of recombinant AGGF1 protein attenuates atrophy phenotypes in mice with denervation (gastrocnemius weight 81.3 ± 5.7 mg vs. 67.3 ± 5.1 mg for AGGF1 vs. buffer; P < 0.05) and cachexia (133.7 ± 4.7 vs. 124.3 ± 3.2; P < 0.05). AGGF1 expression undergoes remodelling and is up-regulated in gastrocnemius and soleus muscles from atrophy mice and impaired leg muscles from patients with lumbar disc herniation by 50-60% (P < 0.01). Mechanistically, AGGF1 interacts with TWEAK (tumour necrosis factor-like weak inducer of apoptosis), which reduces interaction between TWEAK and its receptor Fn14 (fibroblast growth factor-inducing protein 14). This leads to inhibition of Fn14-induced NF-kappa B (NF-κB) p65 phosphorylation, which reduces expression of muscle-specific E3 ubiquitin ligase MuRF1 (muscle RING finger 1), resulting in increased MyHC and α-actin and partial reversal of atrophy phenotypes. Autophagy is reduced in Aggf1+/- mice due to inhibition of JNK (c-Jun N-terminal kinase) activation in denervated and cachectic muscles, and AGGF1 treatment enhances autophagy in two atrophy models by activating JNK. In impaired leg muscles of patients with lumbar disc herniation, MuRF1 is up-regulated and MyHC and α-actin are down-regulated; these effects are reversed by AGGF1 by 50% (P < 0.01). CONCLUSIONS: These results indicate that AGGF1 is a novel regulator for the pathogenesis of skeletal muscle atrophy and attenuates skeletal muscle atrophy by promoting autophagy and inhibiting MuRF1 expression through a molecular signalling pathway of AGGF1-TWEAK/Fn14-NF-κB. More importantly, the results indicate that AGGF1 protein therapy may be a novel approach to treat patients with skeletal muscle atrophy.


Assuntos
Deslocamento do Disco Intervertebral , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Indutores da Angiogênese/metabolismo , Caquexia/patologia , Actinas , Deslocamento do Disco Intervertebral/complicações , Deslocamento do Disco Intervertebral/metabolismo , Deslocamento do Disco Intervertebral/patologia , Atrofia Muscular/patologia , Músculo Esquelético/patologia , Fator de Necrose Tumoral alfa , Proteínas Angiogênicas/metabolismo
9.
Obesity (Silver Spring) ; 31(1): 123-138, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504350

RESUMO

OBJECTIVE: Genetic variants in ninjurin-2 (NINJ2; nerve injury-induced protein 2) confer risk of ischemic strokes and coronary artery disease as well as endothelial activation and inflammation. However, little is known about NINJ2's in vivo functions and underlying mechanisms. METHODS: The phenotypes of NINJ2 knockout mice were analyzed, and mechanisms of NINJ2 that regulate body weight, insulin resistance, and glucose homeostasis and lipogenesis were investigated in vivo and in vitro. RESULTS: This study found that mice lacking NINJ2 showed impaired adipogenesis, increased insulin resistance, and abnormal glucose homeostasis, all of which are risk factors for strokes and coronary artery disease. Mechanistically, NINJ2 directly interacts with insulin receptor/insulin-like growth factor 1 receptor (INSR/IGF1R), and NINJ2 knockdown can block insulin-induced mitotic clonal expansion during preadipocyte differentiation by inhibiting protein kinase B/extracellular signal-regulated kinase (AKT/ERK) signaling and by decreasing the expression of key adipocyte transcriptional regulators CCAAT/enhancer-binding protein ß (C/EBP-ß), C/EBP-α, and peroxisome proliferator-activated receptor γ (PPAR-γ). Furthermore, the interaction between NINJ2 and INSR/IGF1R is needed for maintaining insulin sensitivity in adipocytes and muscle via AKT and glucose transporter type 4. Notably, adenovirus-mediated NINJ2 overexpression can ameliorate diet-induced insulin resistance in mice. CONCLUSIONS: In conclusion, these findings reveal NINJ2 as an important new facilitator of insulin receptors, and the authors propose a unique regulatory mechanism between insulin signaling, adipogenesis, and insulin resistance.


Assuntos
Moléculas de Adesão Celular Neuronais , Resistência à Insulina , Animais , Camundongos , Células 3T3-L1 , Adipogenia/genética , Diferenciação Celular/genética , Doença da Artéria Coronariana , Glucose/metabolismo , Insulina , Resistência à Insulina/genética , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Moléculas de Adesão Celular Neuronais/genética
10.
Metabolism ; 140: 155380, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549436

RESUMO

BACKGROUND: Liver fibrogenesis is orchestrated by the paracrine signaling interaction between several resident cell types regulating the activation of hepatic stellate cells (HSCs). However, the molecular mechanisms underlying paracrine regulation are largely unknown. The aim of this study is to elucidate the role of Ninjurin2 in the crosstalk between hepatocytes and HSCs and better understand the implications of Ninjurin2 in liver fibrosis. METHODS: Ninj2 knockout mice (Ninj2-/-) and hepatocyte-specific Ninj2 overexpression mice (Ninj2Hep-tg) were constructed and followed by the induction of liver fibrosis using methionine- and choline-deficient (MCD) diet. The relationship between Ninjurin2 and liver fibrosis phenotype was evaluated in vivo by measurement of fibrotic markers and related genes. We used an in vitro transwell cell co-culture model to examine the impact of Ninjurin2 in hepatocytes on the crosstalk to HSCs. The interaction of Ninjurin2 and IGF1R and the regulation of PI3K-AKT-EGR1 were analyzed in vivo and in vitro. Finally, an inhibitory Ninjurin2 peptide was injected intravenously via the tail vein to investigate whether inhibiting of Ninjurin2 cascade can attenuate MCD diet-induced liver fibrosis in mice. RESULTS: We found that hepatic Ninjurin2 expression was significantly increased in fibrotic human liver and MCD diet-induced liver injury mouse models. In the mouse model, hepatocyte-specific overexpression of Ninj2 exacerbates MCD-induced liver fibrosis, while global Ninj2 knockout reverses the phenotype. To mimic hepatocyte-HSC crosstalk during liver fibrosis, we used co-culture systems containing hepatocytes and HSCs and determined that Ninjurin2 overexpression in hepatocytes directly activates HSCs in vitro. Mechanistically, Ninjurin2 directly interacts with insulin-like growth factor 1 receptor (IGF1R) and increases the hepatocyte secretion of the fibrogenic cytokine, platelet-derived growth factor-BB (PDGF-BB) through IGF1R-PI3K-AKT-EGR1 cascade. Inhibition of PDGFRB signaling in HSCs can abolish the profibrogenic effect of Ninjurin2. In addition, we demonstrated that a specific inhibitory Ninjurin2 peptide containing an N-terminal adhesion motif mitigates liver fibrosis and improves hepatic function in the mouse models by negatively regulating the sensitivity of IGF1R to IGF1 in hepatocytes. CONCLUSION: Hepatic Ninjurin2 plays a key role in liver fibrosis through paracrine regulation of PDGF-BB/PDGFRB signaling in HSCs, and the results suggesting Ninjurin2 may be a potential therapeutic target.


Assuntos
Moléculas de Adesão Celular Neuronais , Células Estreladas do Fígado , Fígado , Transdução de Sinais , Animais , Humanos , Camundongos , Becaplermina/metabolismo , Becaplermina/farmacologia , Becaplermina/uso terapêutico , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Moléculas de Adesão Celular Neuronais/uso terapêutico , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Fibrose
11.
Life (Basel) ; 12(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362949

RESUMO

The sodium voltage-gated channel beta subunit 3 (SCN3B) plays a crucial role in electrically excitable cells and conduction tissue in the heart. Some previous studies have established that genetic modification in sodium voltage-channel genes encoding for the cardiac ß-subunits, such as SCN1B, SCN2B, SCN3B and SCN4B, can result in atrial fibrillation (AF). In the current study, we identified two rare variants in 5'UTR (NM_018400.4: c.-324C>A, rs976125894 and NM_018400.4: c.-303C>T, rs1284768362) of SCN3B in two unrelated lone AF patients. Our further functional studies discovered that one of them, the A allele of c.-324C>A (rs976125894), can improve transcriptional activity and may raise SCN3B expression levels. The A allele of c.-324C>A (rs976125894) has higher transcriptional activity when it interacts with GATA4, as we confirmed transcription factor GATA4 is a regulator of SCN3B. To the best of our knowledge, the current study is the first to demonstrate that the gain-of-function mutation of SCN3B can produce AF and the first to link a mutation occurring in the non-coding 5'UTR region of SCN3B to lone AF. The work also offers empirical proof that GATA4 is a critical regulator of SCN3B gene regulation. Our findings may serve as an encyclopedia for AF susceptibility variants and can also provide insight into the investigation of the functional mechanisms behind AF variants discovered by genetic methods.

12.
Circ Genom Precis Med ; 15(5): e003603, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895078

RESUMO

BACKGROUND: Idiopathic ventricular tachycardia (VT) occurs in structurally normal hearts and accounts for a significant number of all types of VT. The genome-wide association study is the most effective strategy for identifying novel genetic variants for common diseases. However, no genome-wide association study has been reported for idiopathic VT. METHODS: We conducted the first genome-wide association study for idiopathic VT in the Chinese Han population using a discovery population with 246 cases and 648 controls and a replication population with 222 cases and >4072 controls. Candidate VT genes were functionally characterized in zebrafish. Real-time RT-PCR analysis was used to determine the effects of candidate genes on expression of ion channels and regulators. Patch-clamping was used to record L-type calcium current from neonatal rat cardiomyocytes with overexpression of candidate genes. RESULTS: We identified 4 significant loci represented by rs78960694 (minor allele frequency [MAF]=5.02% in cases and 1.84% in controls; P=4.30×10-12, odds ratio [OR]=3.91) and rs2229095 (MAF=3.25% in cases and 1.63% in controls; P=1.02×10-7, OR=3.44) near and in CCR7, respectively, rs68126098 in NELL1 (MAF=40.98% in cases and 32.07% in controls; P=2.40×10-8, OR=1.53), rs2390325 between PKN2 and LMO4 (MAF=21.19% in cases and 15.12% in controls; P=1.92×10-7, OR=1.62), and rs270065 in CSMD1 (MAF=33.63% in cases and 40.25% in controls; P=9.51×10-7, OR=0.69). Note that the associations of idiopathic VT for CCR7 variant rs78960694 and NELL1 variant rs68126098 reach genome-wide significance (P<5.00×10-8). Overexpression of either PKN2 or CCR7 increased the heart rate in zebrafish, and enhanced expression of CACNA1C, RYR2, or NOS1AP in zebrafish embryos, HEK293, and AC16 cardiomyocytes. Overexpression of either PKN2 or CCR7 significantly increased L-type Ca2+ current density. CONCLUSIONS: The first genome-wide association study identifies 4 novel loci and 2 risk genes (PKN2 and CCR7) for idiopathic VT. These findings identify new molecular determinants for cardiac calcium homeostasis and rhythm maintenance and provide novel targets for diagnosis and treatment for idiopathic VT.


Assuntos
Cálcio , Proteína Quinase C , Taquicardia Ventricular , Animais , Humanos , Ratos , Proteínas Adaptadoras de Transdução de Sinal/genética , Cálcio/metabolismo , Canais de Cálcio Tipo L , Células HEK293 , Homeostase , Proteínas com Domínio LIM/metabolismo , Receptores CCR7/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína Quinase C/genética
13.
Int Angiol ; 41(4): 303-311, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35708045

RESUMO

BACKGROUND: Chronic limb-threatening ischemia (CLTI) affects millions of people and causes health care burden around the globe. Global Limb Anatomic Staging System (GLASS) was proposed as a new anatomic system for integrating the complexity of threatened limb. METHODS: We retrospectively classified computed tomography angiography images of threatened limbs into GLASS stages between January 2018 and April 2020. Comorbidities, limb treatments, and outcomes including amputation-free survival (AFS), reintervention and mortality were compared and the likelihood of benefit from revascularization was estimated according to GLASS. Kaplan-Meier estimate was used to determine the rates of endpoint events at 1 year. Multivariate analysis was performed to identify predictors of those outcomes. RESULTS: In our study, 285 threatened limbs in 263 patients were stratified including GLASS stage I disease (N.=53, 19%), stage II (N.=129; 45%) and stage III (N.=103; 36%) disease. The percentage of limbs undergoing endovascular revascularization and minor amputation increased significantly with increasing GLASS stage. On Kaplan-Meier analysis, increasing GLASS stage was associated with 1-year reduced AFS (stage I: 96.1%, stage II: 94.1%, stage III: 83.9%; log rank P=0.016). The percentage of 1-year reintervention rate in infrapopliteal GLASS grade 3-4 (15%) was significantly higher than the percentage of reintervention in infrapopliteal GLASS grade 0-2 (5%) (Log rank P=0.002). Infrapopliteal GLASS grade 3 and 4 was the independent predictor of reduced AFS. CONCLUSIONS: GLASS stage correlated with intensity of limb treatment and with clinical outcomes at 1 year. Infrapopliteal GLASS grade 3 and 4 independently predicted the reduced amputation-free survival.


Assuntos
Procedimentos Endovasculares , Doença Arterial Periférica , Isquemia Crônica Crítica de Membro , Procedimentos Endovasculares/efeitos adversos , Humanos , Isquemia/diagnóstico por imagem , Isquemia/cirurgia , Salvamento de Membro/métodos , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/cirurgia , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
14.
Curr Med Sci ; 42(3): 561-568, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35678917

RESUMO

OBJECTIVE: To evaluate the impact of hypertension on the clinical outcome of COVID-19 patients aged 60 years old and older. METHODS: This single-center retrospective cohort study enrolled consecutive COVID-19 patients aged 60 years old and older, who were admitted to Liyuan Hospital from January 1, 2020 to April 25, 2020. All included patients were divided into two groups: hypertension and nonhypertension group. The baseline demographic characteristics, laboratory test results, chest computed tomography (CT) images and clinical outcomes were collected and analyzed. The prognostic value of hypertension was determined using binary logistic regression. RESULTS: Among the 232 patients included in the analysis, 105 (45.3%) patients had comorbid hypertension. Compared to the nonhypertension group, patients in the hypertension group had higher neutrophil-to-lymphocyte ratios, red cell distribution widths, lactate dehydrogenase, high-sensitivity C-reactive protein, D-dimer and severity of lung lesion, and lower lymphocyte counts (all P<0.05). Furthermore, the hypertension group had a higher proportion of intensive care unit admissions [24 (22.9%) vs. 14 (11.0%), P=0.02) and deaths [16 (15.2%) vs. 3 (2.4%), P<0.001] and a significantly lower probability of survival (P<0.001) than the nonhypertension group. Hypertension (OR: 4.540, 95% CI: 1.203-17.129, P=0.026) was independently correlated with all-cause in-hospital death in elderly patients with COVID-19. CONCLUSION: The elderly COVID-19 patients with hypertension tend to have worse conditions at baseline than those without hypertension. Hypertension may be an independent prognostic factor of poor clinical outcome in elderly COVID-19 patients.


Assuntos
COVID-19 , Hipertensão , Idoso , COVID-19/complicações , Mortalidade Hospitalar , Humanos , Hipertensão/complicações , Hipertensão/epidemiologia , Pessoa de Meia-Idade , Estudos Retrospectivos , SARS-CoV-2
15.
FASEB J ; 36(6): e22366, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608889

RESUMO

AGGF1 is an angiogenic factor with G-Patch and FHA domains 1 described by our group. Gain-of-function mutations in AGGF1 cause Klippel-Trenaunay syndrome, whereas somatic loss-of-function mutations cause cancer. Paraspeckles are small membraneless subnuclear structures with a diameter of 0.5-1 µm, and composed of lncRNA NEAT1 as the scaffold and three core RNA-binding proteins NONO, PSPC1, and PSF. Here, we show that AGGF1 is a key regulatory and structural component of paraspeckles that induces paraspeckle formation, forms an outside rim of paraspeckles, wraps around the NONO/PSF/PSPC1/NEAT1 core, and regulates the size and number of paraspeckles. AGGF1-paraspeckles are larger (>1 µm) than conventional paraspeckles. RNA-FISH in combination with immunostaining shows that AGGF1, NONO, and NEAT1_2 co-localize in 20.58% of NEAT1_2-positive paraspeckles. Mechanistically, AGGF1 interacts with NONO, PSF, and HNRNPK, and upregulates NEAT1_2, a longer, 23 kb NEAT1 transcript with a key role in regulation of paraspeckle size and number. RNA-immunoprecipitation shows that AGGF1 interacts with NEAT1, which may be another possible mechanism underlying the formation of AGGF1-paraspeckles. NEAT1_2 knockdown reduces the number and size of AGGF1-paraspeckles. Functionally, AGGF1 regulates alternative RNA splicing as it decreases the exon skipping/inclusion ratio in a CD44 model. AGGF1 is also localized in some nuclear foci without NEAT1 or NONO, suggesting that AGGF1 is an important liquid-liquid phase separation (LLPS) driver for other types of AGGF1-positive nuclear condensates (referred to as AGGF1-bodies). Our results identify a special type of AGGF1-coated paraspeckles and provide important insights into the formation, structure, and function of paraspeckles.


Assuntos
Paraspeckles , RNA Longo não Codificante , Núcleo Celular/metabolismo , Domínios Proteicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Mol Genet Genomics ; 297(3): 833-841, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441343

RESUMO

Mutations in the LDL receptor gene LDLR cause familial hypercholesterolemia (FH); however, the pharmacogenomics of specific LDLR mutations remains poorly understood. The goals of this study were to identify the genetic cause of a three-generation Chinese family affected with autosomal dominant FH, and to investigate the response of FH patients in the family to statin and evolocumab. Whole exome sequencing of the FH family with four patients and six unaffected members identified a heterozygous splicing mutation (c.1187-2A>G) in LDLR. The mutation co-segregated with FH in the family, providing strong genetic evidence to support its pathogenicity. The proband was a 48-year-old male FH patient who had an acute myocardial infarction (MI) and ventricular fibrillation (VF), and showed LDL-C of 5.23 mmol/L. A combination of life style modifications on food and exercise and treatment with rosuvastatin reduced his LDL-C to 2.05-2.80 mmol/L. Addition of ezetimibe did not improve rosuvastatin therapy, but addition of evolocumab further reduced LDL-C by 70% to 0.7 mmol/L at the first time and by 67% to 1.31 mmol/L at the second time. Rosuvastatin also reduced LDL-C for proband's father and sister by 40% and 43-63%, respectively. Lovastatin alone or addition to rosuvastatin treatment did not have any effect on LDL-C for the proband and his son. Both patients carry ApoE 3/4 genotype and SLCO1B1 rs4149056 TT genotype. These results suggest that combined treatment with rosuvastatin (but not lovastatin or ezetimibe) and evolocumab can control LDL-C to meet the LDL-C treatment goal for patients with LDLR splicing mutation c.1187-2A>G.


Assuntos
Hiperlipidemias , Hiperlipoproteinemia Tipo II , Anticorpos Monoclonais Humanizados , LDL-Colesterol/genética , Ezetimiba/uso terapêutico , Humanos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Rosuvastatina Cálcica/uso terapêutico
17.
PLoS Genet ; 18(3): e1009841, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245286

RESUMO

Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish.


Assuntos
Degeneração Retiniana , Peixe-Zebra , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas do Olho/metabolismo , Mamíferos/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Acta Physiol (Oxf) ; 235(1): e13800, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35156297

RESUMO

AIM: Loss-of-function KCNMA1 variants cause Liang-Wang syndrome (MIM #618729), a newly identified multiple malformation syndrome with a broad spectrum of developmental and neurological phenotypes. However, the full spectrum of clinical features and underlying pathogenic mechanisms need full elucidation. METHODS: Exome sequencing was used to identify pathogenic variants. Patch-clamp recordings were performed to access the effects of KCNMA1 variants on BK channels. Total and membrane protein expression levels of BK channels were characterized using Western blotting. RESULTS: We report identification and functional characterization of two new de novo loss-of-function KCNMA1 variants p.(A172T) and p.(A314T) with characteristics of Liang-Wang syndrome. Variant p.(A172T) is associated with developmental delay, cognitive impairment and ataxia. Mechanistically, p.(A172T) abolishes BK potassium current, inhibits Mg2+ -dependent gating, but shifts conductance-voltage (G-V) curves to more positive potentials when complexed with WT channels. Variant p.(A314T) is associated with developmental delay, intellectual disability, cognitive impairment, mild ataxia and generalized epilepsy; suppresses BK current amplitude; and shifts G-V curves to more positive potentials when expressed with WT channels. In addition, two new patients with previously reported gain-of-function variants p.(N536H) and p.(N995S) are found to show epilepsy and paroxysmal dyskinesia as reported previously, but also exhibit additional symptoms of cognitive impairment and dysmorphic features. Furthermore, variants p.(A314T) and p.(N536H) reduced total and membrane levels of BK proteins. CONCLUSION: Our findings identified two new loss-of-function mutations of KCNMA1 associated with Liang-Wang syndrome, expanded the spectrum of clinical features associated with gain-of-function KCNMA1 variants and emphasized the overlapping features shared by gain-of-function and loss-of-function mutations.


Assuntos
Epilepsia , Deficiência Intelectual , Ataxia/genética , Epilepsia/genética , Epilepsia/patologia , Humanos , Deficiência Intelectual/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Fenótipo
19.
J Biol Chem ; 298(4): 101759, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35202649

RESUMO

Angiogenic factor AGGF1 (AngioGenic factor with G-patch and FHA (Forkhead-Associated) domain 1) blocks neointimal formation (formation of a new or thickened layer of arterial intima) after vascular injury by regulating phenotypic switching of vascular smooth muscle cells (VSMCs). However, the AGGF1 receptor on VSMCs and the underlying molecular mechanisms of its action are unknown. In this study, we used functional analysis of serial AGGF1 deletions to reveal the critical AGGF1 domain involved in VSMC phenotypic switching. This domain was required for VSMC phenotypic switching, proliferation, cell cycle regulation, and migration, as well as the regulation of cell cycle inhibitors cyclin D, p27, and p21. This domain also contains an RDDAPAS motif via which AGGF1 interacts with integrin α7 (ITGA7), but not α8. In addition, we show that AGGF1 enhanced the expression of contractile markers MYH11, α-SMA, and SM22 and inhibited MEK1/2, ERK1/2, and ELK phosphorylation in VSMCs, and that these effects were inhibited by knockdown of ITGA7, but not by knockdown of ITGA8. In vivo, deletion of the VSMC phenotypic switching domain in mice with vascular injury inhibited the functions of AGGF1 in upregulating α-SMA and SM22, inhibiting MEK1/2, ERK1/2, and ELK phosphorylation, in VSMC proliferation, and in blocking neointimal formation. Finally, we show the inhibitory effect of AGGF1 on neointimal formation was blocked by lentivirus-delivered shRNA targeting ITGA7. Our data demonstrate that AGGF1 interacts with its receptor integrin α7 on VSMCs, and this interaction is required for AGGF1 signaling in VSMCs and for attenuation of neointimal formation after vascular injury.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Antígenos CD/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Cadeias alfa de Integrinas/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/genética , Neointima/metabolismo , Lesões do Sistema Vascular/metabolismo
20.
Cell Mol Immunol ; 19(5): 602-618, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35079145

RESUMO

Fungal infections cause ~1.5 million deaths each year worldwide, and the mortality rate of disseminated candidiasis currently exceeds that of breast cancer and malaria. The major reasons for the high mortality of candidiasis are the limited number of antifungal drugs and the emergence of drug-resistant species. Therefore, a better understanding of antifungal host defense mechanisms is crucial for the development of effective preventive and therapeutic strategies. Here, we report that DOCK2 (dedicator of cytokinesis 2) promotes indispensable antifungal innate immune signaling and proinflammatory gene expression in macrophages. DOCK2-deficient macrophages exhibit decreased RAC GTPase (Rac family small GTPase) activation and ROS (reactive oxygen species) production, which in turn attenuates the killing of intracellular fungi and the activation of downstream signaling pathways. Mechanistically, after fungal stimulation, activated SYK (spleen-associated tyrosine kinase) phosphorylates DOCK2 at tyrosine 985 and 1405, which promotes the recruitment and activation of RAC GTPases and then increases ROS production and downstream signaling activation. Importantly, nanoparticle-mediated delivery of in vitro transcribed (IVT) Rac1 mRNA promotes the activity of Rac1 and helps to eliminate fungal infection in vivo. Taken together, this study not only identifies a critical role of DOCK2 in antifungal immunity via regulation of RAC GTPase activity but also provides proof of concept for the treatment of invasive fungal infections by using IVT mRNA.


Assuntos
Candidíase , Proteínas Ativadoras de GTPase , Fatores de Troca do Nucleotídeo Guanina , Imunidade Inata , Proteínas rac de Ligação ao GTP , Animais , Candidíase/imunologia , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...