Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(1): e0350922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36598279

RESUMO

Bacterial defense barriers, such as DNA methylation-associated restriction-modification (R-M) and the CRISPR-Cas system, play an important role in bacterial antimicrobial resistance (AMR). Recently, a novel R-M system based on DNA phosphorothioate (PT) modification has been shown to be widespread in the kingdom of Bacteria as well as Archaea. However, the potential role of the PT R-M system in bacterial AMR remains unclear. In this study, we explored the role of PT R-Ms in AMR with a series of common clinical pathogenic bacteria. By analyzing the distribution of AMR genes related to mobile genetic elements (MGEs), it was shown that the presence of PT R-M effectively reduced the distribution of horizontal gene transfer (HGT)-derived AMR genes in the genome, even in the bacteria that did not tend to acquire AMR genes by HGT. In addition, unique gene variation analysis based on pangenome analysis and MGE prediction revealed that the presence of PT R-M could suppress HGT frequency. Thus, this is the first report showing that the PT R-M system has the potential to repress HGT-derived AMR gene acquisition by reducing the HGT frequency. IMPORTANCE In this study, we demonstrated the effect of DNA PT modification-based R-M systems on horizontal gene transfer of AMR genes in pathogenic bacteria. We show that there is no apparent association between the genetic background of the strains harboring PT R-Ms and the number of AMR genes or the kinds of gene families. The strains equipped with PT R-M harbor fewer plasmid-derived, prophage-derived, or integrating mobile genetic element (iMGE)-related AMR genes and have a lower HGT frequency, but the degree of inhibition varies among different bacteria. In addition, compared with Salmonella enterica and Escherichia coli, Klebsiella pneumoniae prefers to acquire MGE-derived AMR genes, and there is no coevolution between PT R-M clusters and bacterial core genes.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Bactérias/genética , Enzimas de Restrição-Modificação do DNA/genética , DNA , Transferência Genética Horizontal
2.
Virology ; 533: 68-76, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31125854

RESUMO

Reoviruses are thought to replicate and assemble in special cytoplasmic structures called 'viroplasms'. However, little is known about the viroplasms of the insect reoviruses, the cypoviruses. To investigate the viroplasm of Dendrolimus punctatus cypovirus (DpCPV), all proteins encoded by the 10 genomic segments of DpCPV were expressed in Sf9 cells using the Bac-to-Bac system. The viral nonstructural protein NSP2 formed viroplasm-like dots which showed close apposition with the endoplasmic reticulum and were surrounded by intracellular membranes during transfection. Colocalization and coimmunoprecipitation assays showed that NSP2 interacts with 4 of 6 structural proteins and another 2 nonstructural proteins, while NSP1 only colocalized with VP4, and NSP3 did not colocalize with any structural protein. Immunoelectron microscopy revealed that NSP2 were nearby the endoplasmic reticulum and mitochondria, and viral particles were present in the electron-dense inclusions formed by NSP2. We proposed that NSP2 is responsible for forming the viroplasms structures of DpCPV.


Assuntos
Corpos de Inclusão Viral/virologia , Reoviridae/metabolismo , Spodoptera/virologia , Proteínas não Estruturais Virais/metabolismo , Animais , Ligação Proteica , Reoviridae/genética , Células Sf9 , Proteínas não Estruturais Virais/genética
3.
Viruses ; 11(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939777

RESUMO

Dendrolimus punctatus cypovirus (DpCPV), belonging to the genus Cypovirus within the family Reoviridae, is considered the most destructive pest of pine forests worldwide. DpCPV has a genome consisting of 10 linear double-stranded RNA segments. To establish a reverse genetics system, we cloned cDNAs encoding the 10 genomic segments of DpCPV into three reverse genetics vectors in which each segment was transcribed under the control of a T7 RNA polymerase promoter and terminator tagged with a hepatitis delta virus ribozyme sequence. We also constructed a vp80-knockout Autographa californica multiple nucleopolyhedrovirus bacmid to express a T7 RNA polymerase codon-optimized for Sf9 cells. Following transfection of Sf9 cells with the three vectors and the bacmid, occlusion bodies (OBs) with the typical morphology of cypovirus polyhedra were observed by optical microscopy. The rescue system was verified by incorporation of a HindIII restriction enzyme site null mutant of the 9th genomic segment. Furthermore, when we co-transfected Sf9 cells with the reverse genetics vectors, the bacmid, and an additional vector bearing an egfp gene flanked with the 5' and 3' untranslated regions of the 10th genomic segment, aggregated green fluorescence co-localizing with the OBs was observed. The rescued OBs were able to infect Spodopetra exigua larvae, although their infectivity was significantly lower than that of wild-type DpCPV. This reverse genetics system for DpCPV could be used to explore viral replication and pathogenesis and to facilitate the development of novel bio-insecticides and expression systems for exogenous proteins.


Assuntos
Reoviridae/crescimento & desenvolvimento , Reoviridae/genética , Genética Reversa/métodos , Animais , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Expressão Gênica , Genoma Viral , Corpos de Oclusão Virais , RNA Viral/genética , Células Sf9 , Spodoptera , Transfecção , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760565

RESUMO

The budded virus of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infects insect cells through mainly clathrin-mediated endocytosis. However, the cell entry pathway of AcMNPV remains unclear. In this study, by using population-based analysis of single-virus tracking and electron microscopy, we investigated the internalization, fusion behavior, and endocytic trafficking of AcMNPV. AcMNPV internalization into host insect cells was facilitated by actin polymerization and dynamin. After incorporation into early endosomes, the AcMNPV envelope fused with the membranes of early endosome, allowing for nucleocapsid release into the cytoplasm. Microtubules were implicated in the bidirectional and long-range transport of virus-containing endosomes. In addition, microtubule depolymerization reduced the motility of virus-bearing early endosomes, impairing the progression of infection beyond enlarged early endosomes. These findings demonstrated that AcMNPV internalization was facilitated by actin polymerization in a dynamin-dependent manner, and nucleocapsid release occurred in early endosomes in a microtubule-dependent manner. This study provides mechanistic and kinetic insights into AcMNPV infection and enhance our understanding of the infection pathway of baculoviruses.IMPORTANCE Baculoviruses are used widely as environmentally benign pesticides, protein expression systems, and potential mammalian gene delivery vectors. Despite the significant application value, little is known about the cell entry and endocytic trafficking pathways of baculoviruses. In this study, we demonstrated that the alphabaculovirus AcMNPV exhibited actin- and microtubule-dependent transport for nucleocapsid release predominantly from within early endosomes. In contrast to AcMNPV transduction in mammalian cells, its infection in host insect cells is facilitated by actin polymerization for internalization and microtubules for endocytic trafficking within early endosomes, implying that AcMNPV exhibits cell type specificity in the requirement of the cytoskeleton network. In addition, experimental depolymerization of microtubules impaired the progression of infection beyond enlarged early endosomes. This is the first study that dissects the cell entry pathway of baculoviruses in host cells at the single-particle level, which advances our understanding of the early steps of baculovirus entry.


Assuntos
Nucleocapsídeo , Nucleopoliedrovírus , Internalização do Vírus , Actinas/metabolismo , Animais , Transporte Biológico Ativo , Dinaminas/metabolismo , Endocitose , Endossomos/metabolismo , Endossomos/ultraestrutura , Endossomos/virologia , Proteínas de Insetos/metabolismo , Microscopia Eletrônica de Transmissão , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Nucleocapsídeo/metabolismo , Nucleocapsídeo/ultraestrutura , Nucleopoliedrovírus/fisiologia , Nucleopoliedrovírus/ultraestrutura , Células Sf9 , Spodoptera
5.
Viruses ; 10(11)2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441758

RESUMO

The cell entry mechanism of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is not fully understood. Previous studies showed that AcMNPV entered host cells primarily through clathrin-mediated endocytosis, and could efficiently infect cells via fusion with the plasma membrane after a low-pH trigger. However, whether AcMNPV enters cells via these two pathways simultaneously, and the exact manner in which AcMNPV particles are internalized into cells remains unclear. In this study, using single-virus tracking, we observed that AcMNPV particles were first captured by pre-existing clathrin-coated pits (CCP), and were then delivered to early endosomes. Population-based analysis of single-virus tracking and quantitative electron microscopy demonstrated that the majority of particles were captured by CCPs and internalized via invagination. In contrast, a minority of virus particles were not delivered to CCPs, and were internalized through direct fusion with the plasma membrane without invagination. Quantitative electron microscopy also showed that, while inhibition of CCP assembly significantly impaired viral internalization, inhibition of endosomal acidification blocked virus particles out of vesicles. Collectively, these findings demonstrated that approximately 90% of AcMNPV particles entered cells through clathrin-mediated endocytosis and 10% entered via direct fusion with the plasma membrane. This study will lead toward a better understanding of AcMNPV infection.


Assuntos
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Nucleopoliedrovírus/fisiologia , Internalização do Vírus , Animais , Microscopia Eletrônica , Células Sf9
6.
Viruses ; 9(4)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368302

RESUMO

Dendrolimus punctatus cypovirus (DpCPV) is an important pathogen of D. punctatus, but little is known about the mechanisms of DpCPV infection. Here, we investigated the effects of VP3, VP4 and VP5 structural proteins on the viral invasion. Both the C-terminal of VP3 (methyltransferase (MTase) domain) and VP4 (A-spike) bound to Spodoptera exigua midgut brush border membrane vesicles (BBMVs) in a dose-dependent manner, and the binding was inhibited by purified DpCPV virions. Importantly, anti-MTase and anti-VP4 antibodies inhibited viral binding to S. exigua BBMVs. Using far-Western blots, a 65 kDa protein in Bombyx mori BBMVs, identified as alkaline phosphatase protein (BmALP) by mass spectrometry, specifically interacted with DpCPV MTase. The interaction between MTase and BmALP was verified by co-immunoprecipitation in vitro. Pretreatment of B. mori BBMVs with an anti-ALP antibody or incubation of DpCPV virions with prokaryotically expressed BmALP reduced viral attachment. Additionally, BmALP inhibited DpCPV infection in S. exigua larvae. Our data provide evidence that the MTase domain and A-spike function as viral attachment proteins during the DpCPV infection process, and ALP is the ligand that interacts with DpCPV via the MTase domain. These results augment our understanding of the mechanisms used by cypoviruses to enter their hosts.


Assuntos
Fosfatase Alcalina/metabolismo , Bombyx/enzimologia , Metiltransferases/metabolismo , Reoviridae/enzimologia , Reoviridae/fisiologia , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Animais , Imunoprecipitação , Metiltransferases/genética , Ligação Proteica , Reoviridae/genética , Spodoptera/virologia , Proteínas Estruturais Virais/genética
7.
Mol Plant ; 9(12): 1583-1608, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27688206

RESUMO

The majority of terrestrial vascular plants are capable of forming mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Nevertheless, the precise functions of AM fungal phosphate transporters, and whether they act as sensors or as nutrient transporters, in fungal signal transduction remain unclear. Here, we report a high-affinity phosphate transporter GigmPT from Gigaspora margarita that is required for AM symbiosis. Host-induced gene silencing of GigmPT hampers the development of G. margarita during AM symbiosis. Most importantly, GigmPT functions as a phosphate transceptor in G. margarita regarding the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade. Using the substituted-cysteine accessibility method, we identified residues A146 (in transmembrane domain [TMD] IV) and Val357 (in TMD VIII) of GigmPT, both of which are critical for phosphate signaling and transport in yeast during growth induction. Collectively, our results provide significant insights into the molecular functions of a phosphate transceptor from the AM fungus G. margarita.


Assuntos
Glomeromycota/metabolismo , Glomeromycota/fisiologia , Micorrizas/metabolismo , Micorrizas/fisiologia , Simbiose/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação da Expressão Gênica de Plantas , Glomeromycota/genética , Hifas/metabolismo , Hifas/fisiologia , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...