Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Front Psychol ; 15: 1383397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171233

RESUMO

Introduction: Recent studies have emphasized the intricate connection between exercise and cognition, focusing on specific cognitive processes and their correlations with specific motor skills. However, research on the impact of the qualitative aspects of movement on both short- and long-term cognitive performance is limited. In this quasi-experimental study, we investigate the impact of a 10-week fancy rope-skipping intervention on motor coordination and selective attention of 7-9-year-old children. Methods: A total of 60 primary school students from Changbin School in Haikou participated and completed the study from October to December 2022. The 60 participants were divided into a fancy rope-skipping group and a control group. Children's motor coordination was assessed using the Körperkoordinations Test für Kinder (KTK), while selective attention was evaluated using the d2 Test of Attention. Children were assessed at baseline and after the 10-week intervention. Results: Compared with the control group, the scores for the total KTK and for the hopping for height, jumping sideways, and moving sideways sub-items were significantly higher in the rope-skipping group after the intervention, with a significant interaction effect between time and intervention. Attention concentration improved in the rope-skipping group and had a significant interaction effect between time and intervention compared with the control group; the effects of the intervention on other aspects of selective attention were unclear. Conclusions: Our study suggests that a 10-week fancy rope-skipping intervention may potentially enhance motor coordination and selective attention accuracy in children aged 7-9 years.

2.
Transl Cancer Res ; 13(7): 3251-3261, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39145095

RESUMO

Background: The expression level of early growth response 1 (EGR1) is elevated in colon cancer (CC) tissues and is closely associated with poor prognosis in colorectal cancer. However, the role of EGR1 as a transcription factor (TF) influencing cell senescence in the progression of CC remains largely unexplored. This study aims to investigate the impact of curcumin on colorectal cancer cell senescence by modulating EGR1. Methods: Genes associated with cell senescence were obtained from a public database, and ChIP-X predicted TFs were utilized. The R2 database was employed to examine the relationship between gene expression and survival. CC cell lines were transfected with plasmids to achieve stable expression. Stable transfected cell lines were screened, and changes in RNA and protein expression were assessed using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB) analysis. Senescence levels were measured by SA-ß-Gal staining. Cell proliferation and invasion capabilities were evaluated through soft agar and Matrigel invasion assays. Molecular docking was used to predict the interaction between curcumin and EGR1. Gene activity changes were detected using a dual luciferase reporter gene assay. Results: The results indicated that EGR1 was overexpressed in CC tissues and correlated with poor prognosis. As a TF, EGR1 negatively regulated the expression of telomerase reverse transcriptase (TERT) and sirtuin 6 (SIRT6) genes associated with cell senescence. Knocking down EGR1 increased the rate of cell senescence and inhibited cell proliferation and invasion. Curcumin inhibited the transcriptional activity of EGR1, thereby promoting cell senescence and inhibiting tumor progression. Conclusions: In conclusion, curcumin hampers the activity of TF EGR1, affecting the transcription and translation of target genes TERT and SIRT6, thus promoting cell senescence and inhibiting CC cell proliferation. These findings provide potential insights for targeted therapy of CC.

3.
iScience ; 27(8): 110534, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39175771

RESUMO

In response to corneal injury, an activation of corneal epithelial stem cells and their direct progeny the early transit amplifying (eTA) cells to rapidly proliferate is critical for proper re-epithelialization. Thus, it is important to understand how such stem/eTA cell activation is regulated. Angiotensin-converting enzyme 2 (ACE2) is predominantly expressed in the stem/eTA-enriched limbal epithelium but its role in the limbal epithelium was unclear. Single cell RNA sequencing (scRNA-seq) suggested that Ace2 involved the proliferation of the stem/eTA cells. Ace2 was reduced following corneal injury. Such reduction enhanced limbal epithelial proliferation and downregulated LCN2, a negative regulator of proliferation in a variety of tissues, via upregulating TGFA and consequently activating epidermal growth factor receptor (EGFR). Inhibition of EGFR or overexpression of LCN2 reversed the increased proliferation in limbal epithelial cells lacking ACE2. Our findings demonstrate that after corneal injury, ACE2 is downregulated, which activates limbal epithelial cell proliferation via a TGFA/EGFR/LCN2 pathway.

4.
Nat Commun ; 15(1): 6886, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39128898

RESUMO

The dehydration process is widely recognized as a significant phenomenon in nature. Hydrogels, which are important functional materials with high water content and crosslinked networks, encounter the issue of dehydration in their practical applications. Here, we report the distinctive anisotropic dehydration modality of dynamic hydrogels, which is fundamentally different from the more commonly observed isotropic dehydration of covalent hydrogels. Xerogels derived from dynamic hydrogel dehydration will fully cover a curved substrate surface and exhibit hollow structures with internal knots, in contrast to the bulk xerogels produced by covalent hydrogel dehydration. Depending on the competing cohesion of polymer chains and the adhesion at the hydrogel-substrate interface, the previously overlooked reorganization of polymer networks within dynamic hydrogels, triggered by dehydration-induced stress, has been discovered to regulate such macroscopic structural reconstruction for dynamic hydrogel dehydration. With the attached hydrogel-substrate interface, the surface microstructures of substrates can also be engraved onto xerogels with high resolution and on a large scale. This work will greatly enhance our understanding of the soft matter dehydration process and broaden the applications of dehydration technologies using water-containing materials.

5.
Adv Sci (Weinh) ; : e2403044, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119940

RESUMO

Reprogramming tumor-associated macrophages (TAMs) to an inflammatory phenotype effectively increases the potential of immune checkpoint blockade (ICB) therapy. Artificial mitochondrial transplantation, an emerging and safe strategy, has made brilliant achievements in regulating the function of recipient cells in preclinic and clinic, but its performance in reprogramming the immunophenotype of TAMs has not been reported. Here, the metabolism of M2 TAMs is proposed resetting from oxidative phosphorylation (OXPHOS) to glycolysis for polarizing M1 TAMs through targeted transplantation of mannosylated mitochondria (mPEI/M1mt). Mitochondria isolated from M1 macrophages are coated with mannosylated polyethyleneimine (mPEI) through electrostatic interaction to form mPEI/M1mt, which can be targeted uptake by M2 macrophages expressed a high level of mannose receptors. Mechanistically, mPEI/M1mt accelerates phosphorylation of NF-κB p65, MAPK p38 and JNK by glycolysis-mediated elevation of intracellular ROS, thus prompting M1 macrophage polarization. In vivo, the transplantation of mPEI/M1mt excellently potentiates therapeutic effects of anti-PD-L1 by resetting an antitumor proinflammatory tumor microenvironment and stimulating CD8 and CD4 T cells dependent immune response. Altogether, this work provides a novel platform for improving cancer immunotherapy, meanwhile, broadens the scope of mitochondrial transplantation technology in clinics in the future.

6.
J Agric Food Chem ; 72(33): 18478-18488, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106342

RESUMO

Fusarium crown and root rot (FCRR) has emerged as a highly destructive soil-borne disease, posing a significant threat to the safe cultivation of tomatoes in recent years. The pathogen of tomato FCRR is Fusarium oxysporum f. sp. radicis-lycopersici (Forl). To explore potential phytotoxins from Forl, eight undescribed diterpenoids namely fusariumic acids A-H (1-8) were isolated. Their structures were elucidated by using spectroscopic data analyses, quantum chemical calculations, and X-ray crystallography. Fusariumic acids A (1) and C-H (3-8) were typical isocassadiene-type diterpenoids, while fusariumic acid B (2) contained a cage-like structure with an unusual 7,8-seco-isocassadiene skeleton. A biosynthetic pathway of 2 was proposed. Fusariumic acids A (1) and C-H (3-8) were further assessed for their phytotoxic effects on tomato seedlings at 200 µg/mL. Among them, fusariumic acid F (6) exhibited the strongest inhibition against the hypocotyl and root elongation of tomato seedlings, with inhibitory rates of 61.3 and 45.3%, respectively.


Assuntos
Diterpenos , Fusarium , Doenças das Plantas , Raízes de Plantas , Solanum lycopersicum , Fusarium/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Diterpenos/química , Diterpenos/farmacologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/química , Estrutura Molecular
7.
J Agric Food Chem ; 72(33): 18423-18433, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39106460

RESUMO

Natural products are a valuable resource for the discovery of novel crop protection agents. A series of γ-butyrolactone derivatives, derived from the simplification of podophyllotoxin's structure, were synthesized and assessed for their efficacy against tobacco mosaic virus (TMV). Several derivatives exhibited notable antiviral properties, with compound 3g demonstrating the most potent in vivo anti-TMV activity. At 500 µg/mL, compound 3g achieved an inactivation effect of 87.8%, a protective effect of 71.7%, and a curative effect of 67.7%, surpassing the effectiveness of the commercial plant virucides ningnanmycin and ribavirin. Notably, the syn-diastereomer (syn-3g) exhibited superior antiviral activity compared to the anti-diastereomer (anti-3g). Mechanistic studies revealed that syn-3g could bind to the TMV coat protein and interfere with the self-assembly process of TMV particles. These findings indicate that compound 3g, with its simple chemical structure, could be a potential candidate for the development of novel antiviral agents for crop protection.


Assuntos
4-Butirolactona , Antivirais , Nicotiana , Doenças das Plantas , Podofilotoxina , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Podofilotoxina/química , Podofilotoxina/farmacologia , Antivirais/farmacologia , Antivirais/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Nicotiana/química , Nicotiana/virologia , Relação Estrutura-Atividade , Estrutura Molecular , Proteção de Cultivos
8.
World J Pediatr ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143259

RESUMO

BACKGROUND: Mycoplasma pneumoniae (M. pneumoniae) is a significant contributor to community-acquired pneumonia among children. Since 1968, when a strain of M. pneumoniae resistant to macrolide antibiotics was initially reported in Japan, macrolide-resistant M. pneumoniae (MRMP) has been documented in many countries worldwide, with varying incidence rates. MRMP infections lead to a poor response to macrolide antibiotics, frequently resulting in prolonged fever, extended antibiotic treatment, increased hospitalization, intensive care unit admissions, and a significantly higher proportion of patients receiving glucocorticoids or second-line antibiotics. Since 2000, the global incidence of MRMP has gradually increased, especially in East Asia, which has posed a serious challenge to the treatment of M. pneumoniae infections in children and attracted widespread attention from pediatricians. However, there is still no global consensus on the diagnosis and treatment of MRMP in children. METHODS: We organized 29 Chinese experts majoring in pediatric pulmonology and epidemiology to write the world's first consensus on the diagnosis and treatment of pediatric MRMP pneumonia, based on evidence collection. The evidence searches and reviews were conducted using electronic databases, including PubMed, Embase, Web of Science, CNKI, Medline, and the Cochrane Library. We used variations in terms for "macrolide-resistant", "Mycoplasma pneumoniae", "MP", "M. pneumoniae", "pneumonia", "MRMP", "lower respiratory tract infection", "Mycoplasma pneumoniae infection", "children", and "pediatric". RESULTS: Epidemiology, pathogenesis, clinical manifestations, early identification, laboratory examination, principles of antibiotic use, application of glucocorticoids and intravenous immunoglobulin, and precautions for bronchoscopy are highlighted. Early and rapid identification of gene mutations associated with MRMP is now available by polymerase chain reaction and fluorescent probe techniques in respiratory specimens. Although the resistance rate to macrolide remains high, it is fortunate that M. pneumoniae still maintains good in vitro sensitivity to second-line antibiotics such as tetracyclines and quinolones, making them an effective treatment option for patients with initial treatment failure caused by macrolide antibiotics. CONCLUSIONS: This consensus, based on international and national scientific evidence, provides scientific guidance for the diagnosis and treatment of MRMP in children. Further studies on tetracycline and quinolone drugs in children are urgently needed to evaluate their effects on the growth and development. Additionally, developing an antibiotic rotation treatment strategy is necessary to reduce the prevalence of MRMP strains.

9.
Sensors (Basel) ; 24(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39123995

RESUMO

In the current electromechanical model of cantilevered piezoelectric energy harvesters, the assumption of uniform electric field strength within the piezoelectric layer is commonly made. This uniform electric field assumption seems reasonable since the piezoelectric layer looks like a parallel-plate capacitor. However, for a piezoelectric bender, the strain distribution along the thickness direction is not uniform, which means the internal electric field generated by the spontaneous polarization cannot be uniform. In the present study, a non-uniform electric field in the piezoelectric layer is resolved using electrostatic equilibrium equations. Based on these, the traditional distributed parameter electromechanical model is corrected and simplified to a practical single mode one. Compared with a traditional model adopting a uniform electric field, the bending stiffness term involved in the electromechanical governing equations is explicitly corrected. Through comparisons of predicted power output with two-dimensional finite element analysis, the results show that the present model can better predict the power output performance compared with the traditional model. It is found that the relative corrections to traditional model have nothing to do with the absolute dimensions of the harvesters, but only relate to three dimensionless parameters, i.e., the ratio of the elastic layer's to the piezoelectric layer's thickness; the ratio of the elastic modulus of the elastic layer to the piezoelectric layer; and the piezoelectric materials' electromechanical coupling coefficient squared, k312. It is also found that the upper-limit relative corrections are only related to k312, i.e., the higher k312 is, the larger the upper-limit relative corrections will be. For a PZT-5 unimorph harvester, the relative corrections of bending stiffness and corresponding resonant frequency are up to 17.8% and 8.5%, respectively. An inverse problem to identify the material parameters based on experimentally obtained power output performance is also investigated. The results show that the accuracy of material parameters identification is improved when considering a non-uniform electric field.

10.
Nat Commun ; 15(1): 6737, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112475

RESUMO

Sepsis is a critical global health concern linked to high mortality rates, often due to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). While the gut-lung axis involvement in ALI is recognized, direct migration of gut immune cells to the lung remains unclear. Our study reveals sepsis-induced migration of γδ T17 cells from the small intestine to the lung, triggering an IL-17A-dominated inflammatory response in mice. Wnt signaling activation in alveolar macrophages drives CCL1 upregulation, facilitating γδ T17 cell migration. CD44+ Ly6C- IL-7Rhigh CD8low cells are the primary migratory subtype exacerbating ALI. Esketamine attenuates ALI by inhibiting pulmonary Wnt/ß-catenin signaling-mediated migration. This work underscores the pivotal role of direct gut-to-lung memory γδ T17 cell migration in septic ALI and clarifies the importance of localized IL-17A elevation in the lung.


Assuntos
Lesão Pulmonar Aguda , Movimento Celular , Interleucina-17 , Pulmão , Camundongos Endogâmicos C57BL , Sepse , Animais , Sepse/imunologia , Sepse/complicações , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Camundongos , Interleucina-17/metabolismo , Interleucina-17/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Via de Sinalização Wnt/imunologia , Macrófagos Alveolares/imunologia , Intestino Delgado/imunologia , Intestino Delgado/patologia , Linfócitos Intraepiteliais/imunologia , Modelos Animais de Doenças , Antígenos Ly/metabolismo , Memória Imunológica
11.
Nat Commun ; 15(1): 5602, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961108

RESUMO

Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage, yet the underlying regulatory mechanisms remain elusive. Here, we show that trophoblast specific deletion of Kat8, a MYST family histone acetyltransferase, leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs), we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker, CDX2, via acetylating H4K16. Remarkably, CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover, increasing H4K16ac via using deacetylase SIRT1 inhibitor, EX527, restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8, CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth, which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL, shedding light on early gestational abnormalities.


Assuntos
Fator de Transcrição CDX2 , Proliferação de Células , Autorrenovação Celular , Histona Acetiltransferases , Trofoblastos , Trofoblastos/metabolismo , Fator de Transcrição CDX2/metabolismo , Fator de Transcrição CDX2/genética , Animais , Feminino , Humanos , Camundongos , Gravidez , Autorrenovação Celular/genética , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Aborto Habitual/metabolismo , Aborto Habitual/genética , Camundongos Knockout , Histonas/metabolismo , Diferenciação Celular , Placentação/genética
12.
J Pineal Res ; 76(5): e12987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38975671

RESUMO

Sleep deprivation (SD) has been associated with a plethora of severe pathophysiological syndromes, including gut damage, which recently has been elucidated as an outcome of the accumulation of reactive oxygen species (ROS). However, the spatiotemporal analysis conducted in this study has intriguingly shown that specific events cause harmful damage to the gut, particularly to goblet cells, before the accumulation of lethal ROS. Transcriptomic and metabolomic analyses have identified significant enrichment of metabolites related to ferroptosis in mice suffering from SD. Further analysis revealed that melatonin could rescue the ferroptotic damage in mice by suppressing lipid peroxidation associated with ALOX15 signaling. ALOX15 knockout protected the mice from the serious damage caused by SD-associated ferroptosis. These findings suggest that melatonin and ferroptosis could be targets to prevent devastating gut damage in animals exposed to SD. To sum up, this study is the first report that proposes a noncanonical modulation in SD-induced gut damage via ferroptosis with a clearly elucidated mechanism and highlights the active role of melatonin as a potential target to maximally sustain the state during SD.


Assuntos
Ferroptose , Melatonina , Camundongos Knockout , Privação do Sono , Animais , Camundongos , Melatonina/metabolismo , Melatonina/farmacologia , Privação do Sono/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Peroxidação de Lipídeos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase
13.
Mediators Inflamm ; 2024: 6263447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015676

RESUMO

Group 2 innate lymphoid cells (ILC2) strongly modulate COPD pathogenesis. However, the significance of microbiota in ILC2s remains unelucidated. Herein, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) in regulating ILC2-associated airway inflammation and explores its associated mechanism in COPD. In particular, we assessed the SCFA-mediated regulation of survival, proliferation, and cytokine production in lung sorted ILC2s. To elucidate butyrate action in ILC2-driven inflammatory response in COPD models, we administered butyrate to BALB/c mice via drinking water. We revealed that SCFAs, especially butyrate, derived from dietary fiber fermentation by gut microbiota inhibited pulmonary ILC2 functions and suppressed both IL-13 and IL-5 synthesis by murine ILC2s. Using in vivo and in vitro experimentation, we validated that butyrate significantly ameliorated ILC2-induced inflammation. We further demonstrated that butyrate suppressed ILC2 proliferation and GATA3 expression. Additionally, butyrate potentially utilized histone deacetylase (HDAC) inhibition to enhance NFIL3 promoter acetylation, thereby augmenting its expression, which eventually inhibited cytokine production in ILC2s. Taken together, the aforementioned evidences demonstrated a previously unrecognized role of microbial-derived SCFAs on pulmonary ILC2s in COPD. Moreover, our evidences suggest that metabolomics and gut microbiota modulation may prevent lung inflammation of COPD.


Assuntos
Butiratos , Fibras na Dieta , Linfócitos , Camundongos Endogâmicos BALB C , Doença Pulmonar Obstrutiva Crônica , Animais , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Camundongos , Butiratos/farmacologia , Linfócitos/metabolismo , Fibras na Dieta/farmacologia , Fibras na Dieta/uso terapêutico , Ácidos Graxos Voláteis/metabolismo , Inflamação/metabolismo , Microbioma Gastrointestinal , Masculino , Citocinas/metabolismo , Humanos , Fator de Transcrição GATA3/metabolismo
14.
Sci Rep ; 14(1): 15078, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956260

RESUMO

The relationship between bone mineral density and type 2 diabetes is still controversial. The aim of this study is to investigate the relationship between type 2 diabetes mellitus (T2DM) and bone mineral density (BMD) in elderly men and postmenopausal women. The participants in this study included 692 postmenopausal women and older men aged ≥ 50 years, who were divided into the T2DM group and non-T2DM control group according to whether or not they had T2DM. The data of participants in the two groups were collected from the inpatient medical record system and physical examination center systems, respectively, of the Tertiary Class A Hospital. All data analysis is performed in SPSS Software. Compared with all T2DM group, the BMD and T scores of lumbar spines 1-4 (L1-L4), left femoral neck (LFN) and all left hip joints (LHJ) in the non-T2DM group were significantly lower than those in the T2DM group (P < 0.05), and the probability of major osteoporotic fracture in the next 10 years (PMOF) was significantly higher than that in T2DM group (P < 0.001). However, with the prolongation of the course of T2DM, the BMD significantly decreased, while fracture risk and the prevalence of osteoporosis significantly increased (P < 0.05). We also found that the BMD of L1-4, LFN and LHJ were negatively correlated with homeostatic model assessment-insulin resistance (HOMA-IR) (P = 0.028, P = 0.01 and P = 0.047, respectively). The results also showed that the BMD of LHJ was positively correlated with indirect bilirubin (IBIL) (P = 0.018). Although the BMD was lower in the non-T2DM group than in the T2DM group, the prolongation of the course of T2DM associated with the lower BMD. And the higher prevalence of osteoporosis and fracture risk significantly associated with the prolongation of the course of T2DM. In addition, BMD was significantly associated with insulin resistance (IR) and bilirubin levels in T2DM patients.Registration number: China Clinical Trials Registry: MR-51-23-051741; https://www.medicalresearch.org.cn/search/research/researchView?id=c0e5f868-eca9-4c68-af58-d73460c34028 .


Assuntos
Densidade Óssea , Diabetes Mellitus Tipo 2 , Pós-Menopausa , Humanos , Diabetes Mellitus Tipo 2/complicações , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Vértebras Lombares/diagnóstico por imagem , Osteoporose/epidemiologia , Osteoporose/etiologia , Colo do Fêmur/diagnóstico por imagem , Fatores de Risco , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/etiologia , Prevalência
15.
J Orthop Translat ; 47: 74-86, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007038

RESUMO

Backgrounds: The functional recovery after peripheral nerve injury remains unsatisfactory. This study aims to perform a comprehensive evaluation of the efficacy of Fasudil Hydrochloride at treating the sciatic nerve transection injury in rats and the mechanism involved. Materials and methods: In animal experiments, 75 Sprague Dawley rats that underwent transection and repair of the right sciatic nerve were divided into a control, Fasudil, and Fas + LY group, receiving daily intraperitoneal injection of saline, Fasudil Hydrochloride (10 mg/kg), and Fasudil Hydrochloride plus LY294002 (5 mg/kg), respectively. At day 3 after surgery, the expression of ROCK2, p-PI3K, and p-AKT in L4-5 DRG and the lumbosacral enlargement was determined using Western blotting. At day 7 and 14, axon density in the distal stump was evaluated with immunostaining using the anti-Neurofilament-200 antibody. At day 30, retrograde tracing by injecting Fluoro-gold in the distal stump was performed. Three months after surgery, remyelination was analyzed with immostaining using the anti-MPZ antibody and the transmission electron microscope; Moreover, Motion-Evoked Potential, and recovery of sensorimotor functions was evaluated with a neuromonitor, Footprint, Hot Plate and Von Frey Filaments, respectively. Moveover, the Gastrocnemius muscles were weighed, and then underwent H&E staining, and staining of the neuromuscular junction using α-Bungarotoxin to evaluate the extent of atrophy and degeneration of the endplates in the Gastrocnemius. In vitro, spinal motor neurons (SMNs) and dorsal root ganglia (DRG) were cultured to examine the impact of Fasudil Hydrochloride and LY294002 on the axon outgrowth. Results: Three days after injury, the expression of ROCK2 increased significantly (P<0.01), and Fasudil application significantly increased the expression of p-PI3K and p-AKT in L4-6 DRG and the lumbosacral enlargement (P < 0.05). At day 7 and 14 after surgery, a higher axon density could be observed in the Fasudil group(P < 0.05). At day 30 after surgery, a larger number of motor and sensory neurons absorbing Fluoro-gold could be observed in the Fasudil group (P < 0.01) Three months after surgery, a greater thickness of myelin sheath could be observed in the Fasudil group (P < 0.05). The electrophysiological test showed that a larger amplitude of motion-evoked potential could be triggered in the Fasudil group (P < 0.01). Behavioral tests showed that a higher sciatic function index and a lower threshold for reacting to heat and mechanical stimuli could be measured in the Fasudil group. (P < 0.01). The wet weight ratio of the Gastrocnemius muscles and the area of the cross section of its myofibrils were greater in the Fasudil group (P < 0.01), which also demonstrated a higer ratio of axon-endplate connection and a larger size of endplates (P < 0.05). And there were no significant differences for the abovementioned parameters between the control and Fas + LY groups (P>0.05). In vitro studies showed that Fasudil could significantly promote axon growth in DRG and SMNs, and increase the expression of p-PI3K and p-AKT, which could be abolished by LY294002 (P < 0.05). Conclusions: Fasudil can augment axon regeneration and remyelination, and functional recovery after sciatic nerve injury by activating the PI3K/AKT pathway. The translational potential of this article: The translation potential of this article is that we report for the first time that Fasudil Hydrochloride has a remarkable efficacy at improving axon regeneration and remyelination following a transection injury of the right sciatic nerve in rats through the ROCK/PI3K/AKT pathway, which has a translational potential to be used clinically to treat peripheral nerve injury.

16.
Environ Sci Pollut Res Int ; 31(34): 47189-47200, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38990258

RESUMO

The effects of salinity gradients (500-4000 mg·L-1 NaCl) on electricity generation, nitrogen removal, and microbial community were investigated in a constructed wetland-microbial fuel cell (CW-MFC) system. The result showed that power density significantly increased from 7.77 mW m-2 to a peak of 34.27 mW m-2 as salinity rose, indicating enhanced electron transfer capabilities under saline conditions. At a moderate salinity level of 2000 mg·L-1 NaCl, the removal efficiencies of NH4+-N and TN reached their maximum at 77.34 ± 7.61% and 48.45 ± 8.14%, respectively. This could be attributed to increased microbial activity and the presence of critical nitrogen-removal organisms, such as Nitrospira and unclassified Betaproteobacteria at the anode, as well as Bacillus, unclassified Rhizobiales, Sphingobium, and Simplicispira at the cathode. Additionally, this salinity corresponded with the highest abundance of Exiguobacterium (3.92%), a potential electrogenic bacterium, particularly at the cathode. Other microorganisms, including Geobacter, unclassified Planctomycetaceae, and Thauera, adapted well to elevated salinity, thereby enhancing both electricity generation and nitrogen removal.


Assuntos
Bactérias , Fontes de Energia Bioelétrica , Nitrogênio , Salinidade , Áreas Alagadas , Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos
17.
Int J Biol Macromol ; 275(Pt 2): 133559, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955300

RESUMO

pH could play vital role in the wound healing process due to the bacterial metabolites, which is one essential aspect of desirable wound dressings lies in being pH-responsive. This work has prepared a degradable hyaluronic acid hydrogel dressing with wound pH response-ability. The aldehyde-modified hyaluronic acid (AHA) was obtained, followed by complex mixture formation of eugenol and oregano antibacterial essential oil in the AHA-CMCS hydrogel through the Schiff base reaction with carboxymethyl chitosan (CMCS). This hydrogel composite presents pH-responsiveness, its disintegration mass in acidic environment (pH = 5.5) is 4 times that of neutral (pH = 7.2), in which the eugenol release rate increases from 37.6 % to 82.1 %. In vitro antibacterial and in vivo wound healing investigations verified that hydrogels loaded with essential oils have additional 5 times biofilm removal efficiency, and significantly accelerate wound healing. Given its excellent anti-biofilm and target-release properties, the broad application of this hydrogel in bacteria-associated wound management is anticipated.


Assuntos
Antibacterianos , Biofilmes , Ácido Hialurônico , Hidrogéis , Óleos Voláteis , Cicatrização , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Concentração de Íons de Hidrogênio , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Bandagens
18.
J Dent Sci ; 19(3): 1722-1733, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39035285

RESUMO

Background/purpose: Artificial intelligence (AI) is reshaping clinical practice in dentistry. This study aims to provide a comprehensive overview of global trends and research hotspots on the application of AI to dentistry. Materials and methods: Studies on AI in dentistry published between 2000 and 2023 were retrieved from the Web of Science Core Collection. Bibliometric parameters were extracted and bibliometric analysis was conducted using VOSviewer, Pajek, and CiteSpace software. Results: A total of 651 publications were identified, 88.7 % of which were published after 2019. Publications originating from the United States and China accounted for 34.5 % of the total. The Charité Medical University of Berlin was the institution with the highest number of publications, and Schwendicke and Krois were the most active authors in the field. The Journal of Dentistry had the highest citation count. The focus of AI in dentistry primarily centered on the analysis of imaging data and the dental diseases most frequently associated with AI were periodontitis, bone fractures, and dental caries. The dental AI applications most frequently discussed since 2019 included neural networks, medical devices, clinical decision support systems, head and neck cancer, support vector machine, geometric deep learning, and precision medicine. Conclusion: Research on AI in dentistry is experiencing explosive growth. The prevailing research emphasis and anticipated future development involve the establishment of medical devices and clinical decision support systems based on innovative AI algorithms to advance precision dentistry. This study provides dentists with valuable insights into this field.

19.
Front Pharmacol ; 15: 1407883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040468

RESUMO

Introduction: Diabetic cardiomyopathy (DCM) is predominantly distinguished by impairment in ventricular function and myocardial fibrosis. Previous studies revealed the cardioprotective properties of C1q/tumor necrosis factor-related protein 9 (CTRP9). However, whether CTRP9 affects diabetic myocardial fibrosis and its underlying mechanisms remains unclear. Methods: We developed a type 1 diabetes (T1DM) model in CTRP9-KO mice via streptozotocin (STZ) induction to examine cardiac function, histopathology, fibrosis extent, Yes-associated protein (YAP) expression, and the expression of markers for autophagy such LC3-II and p62. Additionally, we analyzed the direct impact of CTRP9 on high glucose (HG)-induced transdifferentiation, autophagic activity, and YAP protein levels in cardiac fibroblasts. Results: In diabetic mice, CTRP9 expression was decreased in the heart. The absence of CTRP9 aggravated cardiac dysfunction and fibrosis in mice with diabetes, alongside increased YAP expression and impaired autophagy. In vitro, HG induced the activation of myocardial fibroblasts, which demonstrated elevated cell proliferation, collagen production, and α-smooth muscle actin (α-SMA) expression. CTRP9 countered these adverse effects by restoring autophagy and reducing YAP protein levels in cardiac fibroblasts. Notably, the protective effects of CTRP9 were negated by the inhibition of autophagy with chloroquine (CQ) or by YAP overexpression through plasmid intervention. Notably, the protective effect of CTRP9 was negated by inhibition of autophagy caused by chloroquine (CQ) or plasmid intervention with YAP overexpression. Discussion: Our findings suggest that CTRP9 can enhance cardiac function and mitigate cardiac remodeling in DCM through the regulation of YAP-mediated autophagy. CTRP9 holds promise as a potential candidate for pharmacotherapy in managing diabetic cardiac fibrosis.

20.
J Agric Food Chem ; 72(31): 17608-17616, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046798

RESUMO

The diphenyl ether molecular pharmacophore has played a significant role in the development of fungicidal compounds. In this study, a variety of pyrazol-5-yl-phenoxybenzamide derivatives were synthesized and evaluated for their potential to act as succinate dehydrogenase inhibitors (SDHIs). The bioassay results indicate certain compounds to display a remarkable and broad-spectrum in their antifungal activities. Notably, compound 12x exhibited significant in vitro activities against Valsa mali, Gaeumannomyces graminis, and Botrytis cinerea, with EC50 values of 0.52, 1.46, and 3.42 mg/L, respectively. These values were lower or comparable to those of Fluxapyroxad (EC50 = 12.5, 1.93, and 8.33 mg/L, respectively). Additionally, compound 12x showed promising antifungal activities against Sclerotinia sclerotiorum (EC50 = 0.82 mg/L) and Rhizoctonia solani (EC50 = 1.86 mg/L), albeit lower than Fluxapyroxad (EC50 = 0.23 and 0.62 mg/L). Further in vivo experiments demonstrated compound 12x to possess effective protective antifungal activities against V. mali and S. sclerotiorum at a concentration of 100 mg/L, with inhibition rates of 66.7 and 89.3%, respectively. In comparison, Fluxapyroxad showed inhibition rates of 29.2 and 96.4% against V. mali and S. sclerotiorum, respectively. Molecular docking analysis revealed that compound 12x interacts with SDH through hydrogen bonding, π-cation, and π-π interactions, providing insights into the probable mechanism of action. Furthermore, compound 12x exhibited greater binding energy and SDH enzyme inhibitory activity than Fluxapyroxad (ΔGcal = -46.8 kcal/mol, IC50 = 1.22 mg/L, compared to ΔGcal = -41.1 kcal/mol, IC50 = 8.32 mg/L). Collectively, our results suggest that compound 12x could serve as a promising fungicidal lead compound for the development of more potent SDHIs for crop protection.


Assuntos
Ascomicetos , Benzamidas , Inibidores Enzimáticos , Proteínas Fúngicas , Fungicidas Industriais , Simulação de Acoplamento Molecular , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Benzamidas/farmacologia , Benzamidas/química , Ascomicetos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Rhizoctonia/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Pirazóis/química , Pirazóis/farmacologia , Descoberta de Drogas , Estrutura Molecular , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA