Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(6): 213, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37191724

RESUMO

Heavy metals are considered to be one of the main sources of soil contamination. In this study, three tolerant bacteria were isolated from the heavy metal-contaminated soil in mining area, and immobilized bacteria were constructed using corn straw as the carrier. The combined remediation effect of immobilized bacteria and alfalfa in pot experiments was explored in heavy metal-contaminated soil. Under heavy metal stress, inoculation with immobilized bacteria significantly promoted the growth of alfalfa, in which the dry weights of roots, stems, and leaves increased by 19.8, 6.89, and 14.6%, respectively (P < 0.05). Also, inoculation with immobilized bacteria improved the antioxidant capacity of plants and the activity of soil enzymes and improved soil quality (P < 0.05). Microbial-phytoremediation technology effectively reduced the heavy metal content in the soil, and can restore the soil contaminated by heavy metals. The results will help to further understand the mechanism of microbial inoculation to reduce the toxicity of heavy metals, and provide guidance for the cultivation of forage grasses in heavy metal-contaminated soils.


Assuntos
Metais Pesados , Poluentes do Solo , Medicago sativa , Poluentes do Solo/análise , Metais Pesados/análise , Biodegradação Ambiental , Bactérias , Solo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36497949

RESUMO

The physiological mechanisms and phytoremediation effects of three kinds of native quinoa in a desert mining area were studied. We used two different types of local soils (native soil and tailing soil) to analyze the changes in the heavy metal content, leaf physiology, photosynthetic parameters, stem hydraulics, and anatomical characteristics of potted quinoa. The results show that the chlorophyll content, photosynthetic rate, stomatal conductance, and transpiration rate of Kochia scoparia were decreased, but intercellular CO2 concentration (Ci) was increased under heavy metal stress, and the net photosynthetic rate (Pn) was decreased due to non-stomatal limitation. The gas exchange of Chenopodium glaucum and Atriplex centralasiatica showed a decrease in Pn, stomatal conductance (Gs), and transpiration rate (E) due to stomatal limitation. The three species showed a similar change in heavy metal content; they all showed elevated hydraulic parameters, decreased vessel density, and significantly thickened vessel walls under heavy metal stress. Physiological indicators such as proline content and activity of superoxide dismutase (SOD) and peroxidase (POD) increased, but the content of malondialdehyde (MDA) and glutathione (GSH), as well as catalase (CAT) activity, decreased in these three plants. Therefore, it can be concluded that these three species of quinoa, possibly the most dominant 30 desert plants in the region, showed a good adaptability and accumulation capacity under the pressure of heavy metal stress, and these plants can be good candidates for tailings remediation in the Jinchang desert mining area.


Assuntos
Metais Pesados , Metais Pesados/toxicidade , Fotossíntese , Superóxido Dismutase/metabolismo , Malondialdeído , Solo , Plantas/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo
3.
Sci Rep ; 10(1): 10295, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581317

RESUMO

Silicon (Si) plays an important role in plant nutrient capture and absorption, and also promotes plant mechanical strength and light interception in alpine meadows. In this study, we conducted a field experiment to examine the effect of nitrogen (N) application, with (N + Si) and without Si (N-only), on the potential for soil nutrient and the growth of grass and legume plant functional types (PFTs) in an alpine meadow. It was found that N + Si resulted in higher soil nutrient contents, leaf N and P concentrations, abundance and biomass of legume and grass PFTs than N-only. The aboveground biomass of grass (598 g m-2) and legume (12.68 g m-2) PFTs under 600 kg ha-1 ammonium nitrate (NH4NO3) per year addition with Si was significantly higher than that under the same level of N addition without Si (515 and 8.68 g m-2, respectively). The grass:legume biomass ratio did not differ significantly between the N + Si and N-only. This demonstrates that Si enhances N fertilization with apparently little effect on grass:legume ratio and increases plant-available nutrients, indicating that Si is essential for the plant community in alpine meadows.

4.
Biosci Rep ; 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32469047

RESUMO

Long non-coding RNAs (lncRNAs) have appeared as vital regulatory factors in different pathological processes, particularly in tumorigenesis. Increasing number of evidence has demonstrated that long intergenic non-coding RNA 00662 (LINC00662) is overexpressed in several types of cancers and promotes cancer initiation and development. However, whether LINC00662 participates in colorectal cancer (CRC) remains unclear. This study was aimed to explore the expression, biological function and regulatory mechanism of LINC00662 in CRC. Here, we found that LINC00662 expression was obviously upregulated in CRC tissues and cell lines. Down-regulation of LINC00662 dramatically inhibited the growth of CRC cells and increased CRC cell apoptosis.MicroRNA-145 (miR-145) was speculated as a target miRNA of LINC00662 by bioinformatics analysis. Luciferase reporter assays and RNA pull-down assays verified that LINC00662 directly interacted with miR-145. Expression of miR-145 was downregulated in CRC tissues and cell lines. Up-regulation of miR-145suppressed cell growth and promoted apoptosis in CRC cells. Suppression of miR-145markedly reversed the suppressive function of LINC00662 knockdown on CRC cell growth. In addition, c-myc was confirmed as a target gene of miR-145 in CRC cells.  Recover of c-myc expression partially reversed suppression effect mediated by LINC00662 downexpression or miR-145overexpressionon CRC cell growth. Taken together, our results indicate that LINC00662lead to the malignant behavior of CRC cells by upregulating c-myc via sponging miR-145, underlining the essential role of the LINC00662/miR-145/c-myc axis in regulating the growth of CRC cells.

5.
Asian Pac J Cancer Prev ; 21(4): 911-917, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32334450

RESUMO

OBJECTIVE: The study was undertaken to investigate the effects of polyethyleneimine (PEI)-mediated adenovirus 5 early region 1A (E1A) on radiosensitivity of human hepatic carcinoma cell in vitro and to disclosure the underlying mechanism. MATERIALS AND METHODS: Human hepatic carcinoma SMMC-7721 cell line was transfected with E1A gene using PEI vector. Untransfected cells (SMMC-7721 group), cells transfected with blank-vector (SMMC-7721-vect group), and cells transfected with E1A gene (SMMC-7721-E1A group) were treated with 6 MV X-ray irradiation at doses of 0, 1, 2, 4, 8 and Gy, respectively. Radiosensitivity was determined by MTT assay and quantified by calculating the cell survival rate. Cell-cycle distribution and apotosis rate were monitored by flow cytometry. RESULTS: The survival rate of SMMC-7721-E1A was significantly lower than that of SMMC-7721 cell. Apoptosis rate of SMMC-7721-E1A group was significantly higher than that of SMMC-7721group (P<0.01).The ratio of S stage in cell cycle of SMMC-7721-E1A was significantly lower than that in SMMC-7721 cell. The ratio of G2/M stage in cell cycle of SMMC-7721-E1A was significantly higher than that in SMMC-7721 cell (P<0.01). CONCLUSION: PEI could transfect E1A gene into hepatic carcinoma cells PEI-mediated E1A could effectively enhance radiosensitivity of hepatic carcinoma cells which may be related to its effects on apoptosis promoting leading to S phase suppression and G2/M phase arrest.
.


Assuntos
Proteínas E1A de Adenovirus/genética , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/radioterapia , Polietilenoimina/química , Tolerância a Radiação/genética , Proteínas E1A de Adenovirus/administração & dosagem , Apoptose , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Células Tumorais Cultivadas
6.
Med Sci Monit ; 25: 5757-5770, 2019 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-31375656

RESUMO

d_abstr_R Long non-coding RNAs (lncRNAs), a group of non-protein-coding RNAs longer than 200 nucleotides, are involved in multiple biological and pathological processes, such as proliferation, apoptosis, migration, invasion, angiogenesis, and immune escape. Many studies have shown that lncRNAs participate in the complex network of cancer and play vital roles as oncogenes or tumor-suppressor genes in a variety of cancers. Moreover, recent research has shown that abnormal expression of lncRNAs in malignant tumor cells before and after radiotherapy may participate in the progression of cancers and affect the radiation sensitivity of malignant tumor cells mediated by specific signaling pathways or cell cycle regulation. In this review, we summarize the published studies on lncRNAs in radiotherapy regarding the biological function and mechanism of human cancers, including esophageal cancer, pancreatic cancers, nasopharyngeal carcinoma, hepatocellular carcinoma, cervical cancer, colorectal cancer, and gastric cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Apoptose , Biomarcadores Tumorais , Carcinogênese/genética , Proliferação de Células , Progressão da Doença , Humanos , RNA Longo não Codificante/metabolismo , Radioterapia , Transdução de Sinais
7.
Asian Pac J Cancer Prev ; 20(1): 311-319, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30678455

RESUMO

Objective: This study was undertaken to investigate the effect of C225 on the radio-sensitivity of MDA-MB-231 cells line and to disclosure underlying mechanism. Methods: CCK8 assay was used to measure the proliferation inhibition of C225 on MDA-MB-231 cells. The combined effects of C225 plus radiation on the proliferation of MDA-MB-231 cells were also evaluated by CCK-8 assay. The clonogenic assay was performed to evaluate the cell surviving fractions and to determine the radio-sensitizing effect of C225 on MDA-MB-231 cells. The apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blot analysis was used to detect the expression of p-EGFR, p-Akt, p-P38, and caspase-3. Results: C225 had an inhibiting effect on the proliferation of cells in a concentration-dependent manner. The cloning formation capacity was decreased in C225 plus radiation group. C225 increased radio-sensitivity of cells and led to cell cycle arrest in G0/G1 phase markedly. Cells treated with C225 and radiation predominantly exhibited G0/G1 phase arrest and significant decreased in the fraction of cells in the S phase. Moreover, C225 and radiation significantly increased the apoptosis rate of cells. Decreased cell proliferation was further supported by the down-regulation of p-EGFR and its downstream singling pathway proteins such as p-Akt and p-P38. The up-regulation of the Caspase-3 expression in C225 plus radiation group revealed that C225 could increase radiation-inducing cell apoptosis. Conclusion: C225 could increase the radio-sensitivity of cells, which may be due to the anti-proliferative synergistic effect between C225 and radiation as well as the down-regulation of the PI3K/Akt signaling pathway.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cetuximab/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Sci Rep ; 7(1): 11248, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28900140

RESUMO

Seed germination behavior is an important factor in the distribution of species. Many studies have shown that germination is controlled by phylogenetic constraints, however, it is not clear whether phylogenetic constraints or environmental cues explain seed germination of a genus from a common ancestor. In this study, seed germination under different temperature- and water-regimes [induced by different osmotic potentials of polyethylene glycol (PEG)] was investigated in the phylogenetically-related Caragana species that thrive in arid, semiarid, semihumid and humid environments. The results showed that the final percentage germination (FPG) decreased from 95% in species from arid habitats to 0% in species from humid habitats, but with no significant phylogenetic signal. Rather, the response of seed germination to temperature and PEG varied greatly with species from arid to humid habitats and was tightly linked to the ecological niche of the species, their seed coat structure and abscisic acid concentration. The findings are not consistent with the hypothesis that within a family or a genus, seed germination strategies can be a stable evolutionary trait, thus constraining interspecific variation, but the results clearly show that seed germination of Caragana species distributed across a range of habitats has adapted to the environment of that habitat.


Assuntos
Caragana/crescimento & desenvolvimento , Sinais (Psicologia) , Exposição Ambiental , Germinação , Sementes/crescimento & desenvolvimento , Caragana/genética , Clima , Umidade , Pressão Osmótica , Filogenia , Polietilenoglicóis/metabolismo , Sementes/genética , Temperatura
9.
AoB Plants ; 72015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26574603

RESUMO

Fertilization, especially with nitrogen (N), increases aboveground primary productivity (APP), but reduces plant species richness at some level. Silicon (Si) fertilization alone, or with addition of N or phosphorus (P), has multiple direct and indirect beneficial effects on plant growth and development, both for individuals and the whole community. This study aimed to examine the effects of Si, N, P, NSi and PSi combinations on APP and species richness of the community and of four functional groups in an alpine meadow. The results showed that plots fertilized with Si in combination with either N or P had higher APP than when fertilized with N or P alone. Addition of N or P increased APP, and the higher APP occurred when the highest level of N was added, indicating co-limitation of N and P, with N being most limiting. Silicon fertilization alone or with addition of N increased the APP of grasses and forbs. Nitrogen addition decreased the community species richness; Si with addition of N alleviated the loss of species richness of the whole community and the forbs group. For the four functional groups, N or P addition increased the species richness of grasses and decreased that of forbs. Our findings highlight the importance of Si in improving APP and alleviating N fertilization-induced biodiversity loss in grasslands, and will help improve our ability to predict community composition and biomass dynamics in alpine meadow ecosystems subject to changing nutrient availability.

10.
Conserv Physiol ; 3(1): cov046, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27293730

RESUMO

Species originally from alpine wetland and alpine meadow communities now coexist in a novel 'alpine swamp meadow' community as a consequence of wetland drying in the eastern Tibetan Plateau. Considering the projected increase in the fluctuation of water supply from precipitation during the growing season in this area in the future, it is important to investigate the responses of the species that make up this new community to soil water availability. Using a transplant experimental design, we compared the response of leaf traits and growth to different water conditions for species grouped according to their original habitat of wetland or meadow. Twelve perennial herbaceous species, which form an alpine swamp meadow community in Maqu County in the eastern Tibetan Plateau, were used in this study and subjected to two water treatments, namely waterlogged and dry-down. Overall, significant differences in leaf production in response to soil water availability were found for these two groups, indicating strongly different effects of water availability on their growth. Furthermore, the meadow group had lower specific leaf area, leaf area and relative leaf water content, but thicker leaves than those of the wetland group, indicating significant habitat-specific differences in leaf morphology. Regarding physiological traits, the wetland group had significantly higher photosynthetic rates in inundated conditions, whereas for the meadow group the photosynthetic rate was greatest in cyclically dry conditions. Likewise, a similar pattern was observed for stomatal conductance; however, both groups achieved higher instantaneous water use efficiency during the dry-down treatment. The results of this study indicate that the composition of the alpine swamp meadow could be sensitive to changes in precipitation and might be changed substantially by future declines in water supply, as predicted by global climate change models for this region. This potential for compositional change of the community should be considered when management and conservation decisions are made.

11.
Huan Jing Ke Xue ; 35(3): 1131-7, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-24881407

RESUMO

Plants from different functional groups show distinct response to nitrogen (N) addition, however, the patterns and underlying mechanisms across the natural N availability gradient remain unexplored. In present studies, effects of soil N fertility on aboveground N pools and production were examined, and the N: P stoichiometry was compared among forbs, graminoids, and legumes on an alpine grassland located in northeast of Qinghai-Tibet Plateau. Mean N: P ratios of the whole community in 2008 and 2009 were 9. 83 and 11.57, respectively, indicating that the sub-alpine grassland was mainly N-limited. The partial redundancy analysis (partial RDA) showed that the biomass percentage of forbs increased, while those of legumes and graminoids decreased with the soil N availability. It suggested that legumes and graminoids were more competitive than forbs in the natural N-limited grassland, which may be due to the N2-fixation ability and high nutrient use efficiency, respectively. Under the projected increasing N deposition, the vegetation tended to shift from graminoids and legumes to forbs. Significant relationships were found between the percentage of legumes biomass and N: P (phosphorus) ratio for the whole community and non-legumes, indicating that legumes could improve the community N status as well as non-legumes N status on the alpine grassland.


Assuntos
Pradaria , Nitrogênio/química , Plantas/química , Solo/química , Biomassa , Fósforo/química , Tibet
12.
Tree Physiol ; 33(3): 275-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23462313

RESUMO

Predawn leaf water potential (LWP), the LWP between 09:00 and 10:30 h (termed minimum LWP), stem xylem hydraulic conductivity, foliar nitrogen, leaf gas exchange and leaf traits were measured on the same days in adults and 1-year-old to 7-year-old resprouts that had regrown after removing all the aboveground shoots. Height growth and accumulation of aboveground biomass quickly decreased with resprout age and there was no difference between 7-year-old resprouts and the uncut adults. Predawn LWP showed no significant difference between resprouts and adults, but the minimum LWP decreased gradually from -2.0 MPa in 1-year-old resprouts to -3.0 MPa in 7-year-old resprouts. The decrease in minimum LWP was associated with increased hydraulic resistance, as indicated by the gradual decrease in leaf area-specific hydraulic conductivity (KL) and sapwood area-specific hydraulic conductivity (KS) and the associated increase in stem native percentage loss of hydraulic conductivity in older than 2-year-old resprouts. The leaf nitrogen content per unit area (Narea) also decreased steadily from 3.6 g m(-2) in 1-year-old resprouts to 1.7 g m(-2) in 7-year-old resprouts. With the decline in LWP and Narea, the rate of leaf photosynthesis per unit area (Aarea) decreased from 20 µ mol m(-2) s(-1) in 1-year-old resprouts to 11 µ mol m(-2) s(-1) in 7-year-old resprouts. In adults, although KS decreased further compared with 7-year-old resprouts, the minimum LWP, KL, Narea and the rate of photosynthesis increased by 0.3 MPa, 29, 34 and 23%, respectively. The results show that a progressive loss of stem hydraulic conductivity and a steady decrease in foliar nitrogen with age were associated with a decrease in the photosynthetic rate of Caragana korshinskii Kom. resprouts, possibly changing the allocation of photosynthetic assimilates and slowing resprout height growth.


Assuntos
Caragana/crescimento & desenvolvimento , Nitrogênio/metabolismo , Transpiração Vegetal/fisiologia , Água/fisiologia , Biomassa , Caragana/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Árvores , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...