Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(22): e202400074, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366948

RESUMO

Conductive additives are of great importance for the adequate utilization of active materials in all-solid-state lithium batteries by establishing conductive networks in the composite cathode. However, it usually causes severe interfacial side reactions with solid electrolytes, especially sulfide electrolytes, leading to sluggish ion transportation and accelerated performance degradation. Herein, a simple hydrogen thermal reduction process is proposed on a commonly used conductive additive Super P, which effectively removes the surface oxygen functional groups and weakens the interfacial side reactions with sulfide. With a small amount of 1 wt % reduced Super P, ASSLBs demonstrates a competitive capacity of 180.2 mAh g-1, which is much higher than the 130.8 mAh g-1 of untreated Super P. Impressively, reduced Super P based ASSLBs also exhibit a higher capacity retention of 81.8 % than 64.6 % of untreated Super P. The cathode interfacial chemical evolutions reveal that reduced Super P could effectively alleviate the side reactions of sulfide. Reduced Super P shows better reversible capacity compared to reduced carbon nanofiber with almost no loss of capacity retention, due to its more complete conductive network. Our results highlight the importance of oxygen-containing functional groups for conductive additives, lightening the prospect of low-cost 0D conductive additives for practical ASSLBs.

2.
J Mater Chem B ; 9(42): 8862-8870, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34671799

RESUMO

MXene is recognized as an ideal material for sensitive wearable strain sensors because of its unique advantages of conductivity, hydrophilicity and mechanical properties. However, conventional hydrogel sensors utilizing MXene as a conductive material inevitably encounter the excessive accumulation of MXene nanosheets during the process of synthesis, which limits the electron transmission, reduces the conductivity, and concurrently weakens the mechanical capability and sensitivity of sensors. Herein, we construct a dispersion-enhanced MXene hydrogel (DEMH) through a chitosan-induced self-assembly strategy for the first time. Charge transfer is carried out through the flow of a material or a collection of material microstructures, and thus the highly interconnected 3D MXene@Chitosan network provides fast transport channels for electrons, and the DEMH exhibits excellent conductivity and sensibility simultaneously. Besides, the electrostatic self-assembly between MXene and chitosan, and the supramolecular interactions between MXene, chitosan and polyacrylamide chain segment result in excellent mechanical strength (of up to 1900%) and flexibility of DEMH. Furthermore, the introduction of chitosan which possesses a high density of positively charged groups and MXene with semiconducting properties also endows sensor versatility, such as self-adhesion properties and antibacterial activity. This work develops a simple and cut-price strategy for combining MXene unaggregated into a hydrogel as a sensor with high conductivity, sensibility and flexibility. A simple and inexpensive strategy for avoiding self-stacking of two-dimensional conductive materials is proposed, which paves the way for a broad range of applications in electronic skin, human motion detection and intelligent devices.


Assuntos
Resinas Acrílicas/química , Antibacterianos/química , Quitosana/química , Nanocompostos/química , Dispositivos Eletrônicos Vestíveis , Resinas Acrílicas/farmacologia , Antibacterianos/farmacologia , Quitosana/farmacologia , Condutividade Elétrica , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
3.
Adv Mater ; 32(40): e2003790, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32881186

RESUMO

Perovskite X-ray detectors have been demonstrated to be sensitive to soft X-rays (<80 keV) for potential medical imaging applications. However, developing X-ray detectors that are stable and sensitive to hard X-rays (80 to 120 keV) for practical medical imaging is highly desired. Here, a sensitive 2D fluorophenethylammonium lead iodide ((F-PEA)2 PbI4 ) perovskite single-crystal hard-X-ray detector from low-cost solution processes is reported. Dipole interaction of organic ions promotes the ordering of benzene rings as well as the supramolecular electrostatic interaction between electron-deficient F atoms with neighbor benzene rings. Supramolecular interactions serve as a supramolecular anchor to stabilize and tune the electronic properties of single crystals. The 2D (F-PEA)2 PbI4 perovskite single crystal exhibits an intrinsic property with record bulk resistivity of 1.36 × 1012 Ω cm, which brings a low device noise for hard X-ray detection. Meanwhile, the ion-migration phenomenon is effectively suppressed, even under the large applied bias of 200 V, by blocking the ion migration paths after anchoring. Consequently, the (F-PEA)2 PbI4 single crystal detector yields a sensitivity of 3402 µC Gy-1 air cm-2 to 120 keVp hard X-rays with lowest detectable X-ray dose rate of 23 nGyair s-1 , outperforming the dominating CsI scintillator of commercial digital radiography systems by acquiring clear X-ray images under much lower dose rate. In addition, the detector shows high operation stability under extremely high-flux X-ray irradiation.

4.
ACS Macro Lett ; 9(1): 108-114, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638666

RESUMO

Correlating the structure with nanomechanical property of semicrystalline conjugated-polymer crystal is of essential importance for the performance improvement and design of flexible electronic devices. Although it is well-known that the semicrystalline conjugated-polymer crystal exhibits anisotropic structure owing to the π-π and layer stacking of highly coplanar conjugated backbones, the structure-nanomechanical property relationship is missing. Here, we investigated the axial mechanical anisotropy of the P3HT nanofiber by using thermal shape-fluctuation analysis and a three-point bending test based on atomic force microscopy. Our results show that Young's modulus in the layer-stacking direction (EL) is 1-2 orders of magnitude greater than that in the π-conjugated backbone direction (EB). We attribute this mechanical anisotropy to the π-stacking of the P3HT backbone, but the layer stacking will decrease EL, which weakens the mechanical anisotropy. Moreover, we demonstrated that the P3HT nanofiber shows a loading-rate-independent Young's modulus and deformation-dependent resilience in the layer-stacking direction.

5.
Nanoscale ; 11(14): 6677-6684, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30899928

RESUMO

Circulating tumor cells (CTCs) are important markers for cancer diagnosis and treatment, but it is still a challenge to recognize and isolate CTCs because they are very rare in the blood. To selectively recognize CTCs and improve the capture efficiency, micro/nanostructured substrates have been fabricated for this application; however the size of CTCs is often ignored in designing and engineering micro/nanostructured substrates. Herein, a spiky polymer micropillar array is fabricated for capturing CTCs with high efficiency. The surface of the micropillar is cactus-like, and is composed of nanospikes. This hierarchical polymer array is designed according to the size of CTCs, which allows for more interactions of the CTCs with the array by setting the size of gaps among the micropillars to match with the CTCs. This polymer array is created by molding on an ordered silicon array, and then it is coated with an antiepithelial cell adhesion molecule antibody (anti-EpCAM). After co-culture with MCF-7 cells for 45 min, the capture efficiency of this array for CTCs is up to 91% ± 2%. Moreover, the anti-EpCAM modified polymer micropillar arrays present an excellent capacity to isolate CTCs from the whole blood samples of breast cancer patients. This study may provide a new concept for capturing target cells by designing and engineering micro/nanostructured substrates according to the size of target cells.


Assuntos
Neoplasias da Mama/patologia , Nanoestruturas/química , Células Neoplásicas Circulantes/química , Anticorpos Imobilizados/química , Neoplasias da Mama/sangue , Separação Celular , Técnicas de Cocultura , Molécula de Adesão da Célula Epitelial/imunologia , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Células MCF-7 , Análise em Microsséries , Células Neoplásicas Circulantes/metabolismo , Polímeros/química , Propriedades de Superfície
6.
Talanta ; 190: 23-29, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172504

RESUMO

Superhydrophobic substrate is applied in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) detection due to its confinement effect. The weak interaction of superhydrophobic surface with water/salts makes it potential in one-step enrichment and desalting of peptide in MALDI MS analysis. We fabricate a superhydrophobic substrate by spin-coating poly(dimethyl siloxane) (PDMS) on a candle soot layer. On this substrate, the peptide analytes can be confined and enriched in a small area due to the confinement effect and its strong hydrophobic interactions with PDMS. Meanwhile, the desalting can be easily realized by removing the residual solution after the absorption of analyst molecules due to the weak interaction between water/salt contaminants and the superhydrophobic surface. Using this substrate, angiotensin III (Ang III) in the presence of salt with high concentration (2 M or saturated) can be analyzed, and the peptide sequence coverage of 10 µg/mL myoglobin (MYO) and bovine serum albumin (BSA) digests is enhanced to 51% and 26%, which is 37% and 21% analyzed with the commercial ZipTipC18 pipette tips. The LOD of bacitracin A (Bac A) in milk with this substrate is 100 pM and nearly 360 times lower than the LOD of standard testing method. This substrate has potential practical applications in proteomics research and actual sample analysis.


Assuntos
Dimetilpolisiloxanos/química , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptídeos/isolamento & purificação , Sais/química , Fuligem/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Bovinos , Leite/química
7.
ACS Appl Mater Interfaces ; 9(25): 21548-21553, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28580781

RESUMO

Surface-enhanced Raman scattering spectroscopy (SERS) is a nondestructive testing technique. To increase reproducibility of the SERS measurement is the key issue for improving the performance of SERS. In this article, we demonstrate an efficient method to improve the reproducibility, using confined silver nanoparticles (AgNPs) as a substrate. The AgNPs are formed uniformly on the tops of the prepared nanopillars by droplet-confined electroless deposition on the hydrophobic Si nanopillar arrays. The AgNPs present an excellent reproducibility in Raman measurement; the relative standard deviation is down to 3.40%. There exists a great linear correlation between the concentration of Rhodamine 6G (R6G) and the Raman intensity in the log-log plot; R2 is 0.998, indicating that this SERS substrate can be applied for the quantitative SERS analysis. Meanwhile, the minimum detection concentration is down to 10-11 M on the hydrophobic substrate, with R6G as a probe molecule.

8.
Nanoscale ; 9(1): 449-453, 2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934988

RESUMO

The ability to regulate the tilt angle of Si nanostructures is important for their applications in photoelectric devices. Herein we demonstrate a facile method to precisely regulate the tilt angle of nanocones with metal-assisted chemical etching (MaCE) in a one-step process based on the systematic investigation of the formation mechanism of the tilt angle. With Au nanohole arrays as templates, the tilt angles of Si nanocone arrays can be tuned from 69.2° to 88.6° by varying the composition of the etchant. When the Si nanocone arrays are the same height (2.2 µm), the reflectivity decreases with the decreasing of the tilt angle. When the tilt angle is 83.0°, the average reflectivity is lowered to 1.37% in the 250-1000 nm range. This method can be applied for fabrication over a large area (as large as 2 cm × 2 cm). This chemical method should be applicable to other Si nanostructures, which may promote the applications of MaCE in semiconductor manufacturing.

9.
Nanoscale ; 7(30): 13026-32, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26172223

RESUMO

Here we demonstrate a simple method to improve the plasmonic sensing performance of gold gratings. The gratings consist of periodic polymer gratings covered with a gold layer, created by nanoimprint lithography and metal deposition. We investigated the effect of gold thickness and the incident angles on the plasmonic sensing performance. With the optimized gold layer, the full-width at half maximum of this grating was reduced by 60% by using the oblique incident light instead of the normal incident light. A maximum value of the figure of merit at oblique incidence is 12, which is double the one at normal incidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA