Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1378738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660442

RESUMO

Soil salinization poses a mounting global ecological and environmental threat. The identification of genes responsible for negative regulation of salt tolerance and their utilization in crop improvement through gene editing technologies emerges as a swift strategy for the effective utilization of saline-alkali lands. One efficient mechanism of plant salt tolerance is maintaining the proper intracellular K+/Na+ ratio. The Shaker K+ channels play a crucial role in potassium absorption, transport, and intracellular potassium homeostasis in plant cells. Here, the study presents the first genome-wide identification of Shaker K+ channels in Nicotiana tabacum L., along with a detailed bioinformatic analysis of the 20 identified members. Transcriptome analysis revealed a significant up-regulation of NtSKOR1B, an outwardly-rectifying member predominantly expressed in the root tissue of tobacco seedlings, in response to salt stress. This finding was then confirmed by GUS staining of ProNtSKOR1B::GUS transgenic lines and RT-qPCR analysis. Subsequently, NtSKOR1B knockout mutants (ntskor1) were then generated and subjected to salt conditions. It was found that ntskor1 mutants exhibit enhanced salt tolerance, characterized by increased biomass, higher K+ content and elevated K+/Na+ ratios in both leaf and root tissues, compared to wild-type plants. These results indicate that NtSKOR1B knockout inhibits K+ efflux in root and leaf tissues of tobacco seedlings under salt stress, thereby maintaining higher K+/Na+ ratios within the cells. Thus, our study identifies NtSKOR1B as a negative regulator of salt tolerance in tobacco seedlings.

2.
Proc Natl Acad Sci U S A ; 120(40): e2311557120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748059

RESUMO

Plasmodium parasites cause malaria with disease outcomes ranging from mild illness to deadly complications such as severe malarial anemia (SMA), pulmonary edema, acute renal failure, and cerebral malaria. In young children, SMA often requires blood transfusion and is a major cause of hospitalization. Malaria parasite infection leads to the destruction of infected and noninfected erythrocytes as well as dyserythropoiesis; however, the mechanism of dyserythropoiesis accompanied by splenomegaly is not completely understood. Using Plasmodium yoelii yoelii 17XNL as a model, we show that both a defect in erythroblastic island (EBI) macrophages in supporting red blood cell (RBC) maturation and the destruction of reticulocytes/RBCs by the parasites contribute to SMA and splenomegaly. After malaria parasite infection, the destruction of both infected and noninfected RBCs stimulates extramedullary erythropoiesis in mice. The continuous decline of RBCs stimulates active erythropoiesis and drives the expansion of EBIs in the spleen, contributing to splenomegaly. Phagocytosis of malaria parasites by macrophages in the bone marrow and spleen may alter their functional properties and abilities to support erythropoiesis, including reduced expression of the adherence molecule CD169 and inability to support erythroblast differentiation, particularly RBC maturation in vitro and in vivo. Therefore, macrophage dysfunction is a key mechanism contributing to SMA. Mitigating and/or alleviating the inhibition of RBC maturation may provide a treatment strategy for SMA.


Assuntos
Anemia , Malária Cerebral , Plasmodium yoelii , Criança , Humanos , Animais , Camundongos , Pré-Escolar , Eritropoese , Esplenomegalia , Eritrócitos , Macrófagos
3.
Pathogens ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37624021

RESUMO

Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.

4.
Parasitol Int ; 91: 102636, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35926694

RESUMO

Rodent malaria parasites have been widely used in all aspects of malaria research to study parasite development within rodent and insect hosts, drug resistance, disease pathogenesis, host immune response, and vaccine efficacy. Rodent malaria parasites were isolated from African thicket rats and initially characterized by scientists at the University of Edinburgh, UK, particularly by Drs. Richard Carter, David Walliker, and colleagues. Through their efforts and elegant work, many rodent malaria parasite species, subspecies, and strains are now available. Because of the ease of maintaining these parasites in laboratory mice, genetic crosses can be performed to map the parasite and host genes contributing to parasite growth and disease severity. Recombinant DNA technologies are now available to manipulate the parasite genomes and to study gene functions efficiently. In this chapter, we provide a brief history of the isolation and species identification of rodent malaria parasites. We also discuss some recent studies to further characterize the different developing stages of the parasites including parasite genomes and chromosomes. Although there are differences between rodent and human malaria parasite infections, the knowledge gained from studies of rodent malaria parasites has contributed greatly to our understanding of and the fight against human malaria.


Assuntos
Malária , Parasitos , Plasmodium yoelii , Plasmodium , Animais , Humanos , Malária/parasitologia , Camundongos , Plasmodium/genética , Plasmodium berghei/genética , Plasmodium yoelii/genética , Ratos , Roedores
5.
Parasitol Int ; 91: 102637, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35926693

RESUMO

Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.


Assuntos
Malária , Parasitos , Animais , Suscetibilidade a Doenças , Resistência a Medicamentos/genética , Marcadores Genéticos , Malária/parasitologia , Camundongos , Roedores , Virulência
6.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887122

RESUMO

Recently it was shown that a specific form of male infertility in Holstein cattle was caused by a nonsense variant in the α/ß-hydrolase domain-containing 16B (ABHD16B) gene resulting in a protein truncation at amino acid position 218 (p.218Q*) and loss of function. Lipidomics showed that the absence of ABHD16B influenced the content of phosphatidylcholine (PC), ceramide (Cer), diacylglycerol (DAG), and sphingomyelin (SM) in variant carrier sperm membranes. However, the exact cause of infertility in affected sires has remained unclear until now. To elucidate the cause of infertility, we analyzed (i) standard sperm parameters (i.e., total sperm number, morphological intact sperm, total sperm motility), (ii) in vitro fertilizability and effects on early embryonic development, and (iii) sperm survival rates (i.e., capacitation time). The affected spermatozoa showed no changes in the usual sperm parameters and were also capable of fertilization in vitro. Furthermore, the absence of ABHD16B did not affect early embryonic development. Based on these results, it was concluded that the affected spermatozoa appeared to be fertilizable per se. Consequently, the actual cause of the inability to fertilize could only be due to a time- and/or place-dependent process after artificial insemination and before fertilization. A process fundamental to the ability to fertilize after insemination is capacitation. Capacitation is a biochemical maturation process that spermatozoa undergo in the female genital tract and is inevitable for the successful fertilization of the oocyte. It is known that the presence and concentration of certain sperm membrane lipids are essential for the correct course of capacitation. However, precisely these lipids are absent in the membrane of spermatozoa affected by the ABHD16B truncation. Since all other causes of fertilization inability were excluded in the previous experiments, consequently, the only remaining hypothesis was that the loss of function of ABHD16B leads to a capacitation disruption. We were able to show that heterozygous and homozygous affected spermatozoa exhibit premature capacitation and therefore decay before fertilization. This effect of the loss of function of ABHD16B has not been described before and our studies now revealed why sires harboring the variant in the ABHD16B gene are infertile.


Assuntos
Infertilidade Masculina , Capacitação Espermática , Animais , Bovinos , Feminino , Hidrolases/metabolismo , Infertilidade Masculina/metabolismo , Masculino , Sêmen , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
7.
Front Vet Sci ; 8: 693290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368281

RESUMO

Genome-wide association study (GWAS) using dog breed standard values as phenotypic measurements is an efficient way to identify genes associated with morphological and behavioral traits. As a result of strong human purposeful selections, several specialized behavioral traits such as herding and hunting have been formed in different modern dog breeds. However, genetic analyses on this topic are rather limited due to the accurate phenotyping difficulty for these complex behavioral traits. Here, 268 dog whole-genome sequences from 130 modern breeds were used to investigate candidate genes underlying dog herding, predation, temperament, and trainability by GWAS. Behavioral phenotypes were obtained from the American Kennel Club based on dog breed standard descriptions or groups (conventional categorization of dog historical roles). The GWAS results of herding behavior (without body size as a covariate) revealed 44 significantly associated sites within five chromosomes. Significantly associated sites on CFA7, 9, 10, and 20 were located either in or near neuropathological or neuronal genes including THOC1, ASIC2, MSRB3, LLPH, RFX8, and CHL1. MSRB3 and CHL1 genes were reported to be associated with dog fear. Since herding is a restricted hunting behavior by removing killing instinct, 36 hounds and 55 herding dogs were used to analyze predation behavior. Three neuronal-related genes (JAK2, MEIS1, and LRRTM4) were revealed as candidates for predation behavior. The significantly associated variant of temperament GWAS was located within ACSS3 gene. The highest associated variant in trainability GWAS is located on CFA22, with no variants detected above the Bonferroni threshold. Since dog behaviors are correlated with body size, we next incorporate body mass as covariates into GWAS; and significant signals around THOC1, MSRB3, LLPH, RFX8, CHL1, LRRTM4, and ACSS3 genes were still detected for dog herding, predation, and temperament behaviors. In humans, these candidate genes are either involved in nervous system development or associated with mental disorders. In conclusion, our results imply that these neuronal or psychiatric genes might be involved in biological processes underlying dog herding, predation, and temperament behavioral traits.

8.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445473

RESUMO

Sperm plasma membrane lipids are essential for the function and integrity of mammalian spermatozoa. Various lipid types are involved in each key step within the fertilization process in their own yet coordinated way. The balance between lipid metabolism is tightly regulated to ensure physiological cellular processes, especially referring to crucial steps such as sperm motility, capacitation, acrosome reaction or fusion. At the same time, it has been shown that male reproductive function depends on the homeostasis of sperm lipids. Here, we review the effects of phospholipid, neutral lipid and glycolipid homeostasis on sperm fertilization function and male fertility in mammals.


Assuntos
Biomarcadores/metabolismo , Fertilidade , Homeostase , Lipídeos de Membrana/análise , Lipídeos de Membrana/metabolismo , Espermatozoides/fisiologia , Animais , Masculino , Mamíferos
9.
Genes (Basel) ; 12(4)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805165

RESUMO

Congenital deafness is prevalent among modern dog breeds, including Australian Stumpy Tail Cattle Dogs (ASCD). However, in ASCD, no causative gene has been identified so far. Therefore, we performed a genome-wide association study (GWAS) and whole genome sequencing (WGS) of affected and normal individuals. For GWAS, 3 bilateral deaf ASCDs, 43 herding dogs, and one unaffected ASCD were used, resulting in 13 significantly associated loci on 6 chromosomes, i.e., CFA3, 8, 17, 23, 28, and 37. CFA37 harbored a region with the most significant association (-log10(9.54 × 10-21) = 20.02) as well as 7 of the 13 associated loci. For whole genome sequencing, the same three affected ASCDs and one unaffected ASCD were used. The WGS data were compared with 722 canine controls and filtered for protein coding and non-synonymous variants, resulting in four missense variants present only in the affected dogs. Using effect prediction tools, two variants remained with predicted deleterious effects within the Heart development protein with EGF like domains 1 (HEG1) gene (NC_006615.3: g.28028412G>C; XP_022269716.1: p.His531Asp) and Kruppel-like factor 7 (KLF7) gene (NC_006619.3: g.15562684G>A; XP_022270984.1: p.Leu173Phe). Due to its function as a regulator in heart and vessel formation and cardiovascular development, HEG1 was excluded as a candidate gene. On the other hand, KLF7 plays a crucial role in the nervous system, is expressed in the otic placode, and is reported to be involved in inner ear development. 55 additional ASCD samples (28 deaf and 27 normal hearing dogs) were genotyped for the KLF7 variant, and the variant remained significantly associated with deafness in ASCD (p = 0.014). Furthermore, 24 dogs with heterozygous or homozygous mutations were detected, including 18 deaf dogs. The penetrance was calculated to be 0.75, which is in agreement with previous reports. In conclusion, KLF7 is a promising candidate gene causative for ASCD deafness.


Assuntos
Doenças do Cão/congênito , Perda Auditiva Neurossensorial/veterinária , Fatores de Transcrição Kruppel-Like/genética , Mutação de Sentido Incorreto , Sequenciamento Completo do Genoma/veterinária , Animais , Austrália , Doenças do Cão/genética , Cães , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/veterinária , Perda Auditiva Neurossensorial/congênito , Perda Auditiva Neurossensorial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Penetrância
10.
Plants (Basel) ; 10(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567573

RESUMO

CBL-interacting protein kinase (CIPK) family is a unique group of serine/threonine protein kinase family identified in plants. Among this family, AtCIPK23 and its homologs in some plants are taken as a notable group for their importance in ions transport and stress responses. However, there are limited reports on their roles in seedling growth and development, especially in Solanaceae plants. In this study, NtCIPK23, a homolog of AtCIPK23 was cloned from Nicotiana tabacum. Expression analysis showed that NtCIPK23 is mainly expressed in the radicle, hypocotyl, and cotyledons of young tobacco seedlings. The transcriptional level of NtCIPK23 changes rapidly and spatiotemporally during seed germination and early seedling growth. To study the biological function of NtCIPK23 at these stages, the overexpressing and CRISPR/Cas9-mediated knock-out (ntcipk23) tobacco lines were generated. Phenotype analysis indicated that knock-out of NtCIPK23 significantly delays seed germination and the appearance of green cotyledon of young tobacco seedling. Overexpression of NtCIPK23 promotes cotyledon expansion and hypocotyl elongation of young tobacco seedlings. The expression of NtCIPK23 in hypocotyl is strongly upregulated by darkness and inhibited under light, suggesting that a regulatory mechanism of light might underlie. Consistently, a more obvious difference in hypocotyl length among different tobacco materials was observed in the dark, compared to that under the light, indicating that the upregulation of NtCIPK23 contributes greatly to the hypocotyl elongation. Taken together, NtCIPK23 not only enhances tobacco seed germination, but also accelerate early seedling growth by promoting cotyledon greening rate, cotyledon expansion and hypocotyl elongation of young tobacco seedlings.

11.
Genes (Basel) ; 11(6)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526869

RESUMO

Root system architecture (RSA) is required for the acquisition of water and mineral nutrients from the soil. One of the essential nutrients, nitrate (NO3-), is sensed and transported by nitrate transporters NRT1.1 and NRT2.1 in the plants. Nitrate transporter 1.1 (NRT1.1) is a dual-affinity nitrate transporter phosphorylated at the T101 residue by calcineurin B-like interacting protein kinase (CIPKs); it also regulates the expression of other key nitrate assimilatory genes. The differential phosphorylation (phosphorylation and dephosphorylation) strategies and underlying Ca2+ signaling mechanism of NRT1.1 stimulate lateral root growth by activating the auxin transport activity and Ca2+-ANR1 signaling at the plasma membrane and the endosomes, respectively. NO3- additionally functions as a signal molecule that forms a signaling system, which consists of a vast array of transcription factors that control root system architecture that either stimulate or inhibit lateral and primary root development in response to localized and high nitrate (NO3-), respectively. This review elucidates the so-far identified nitrate transporters, nitrate sensing, signal transduction, and the key roles of nitrate transporters and its downstream transcriptional regulatory network in the primary and lateral root development in Arabidopsis thaliana under stress conditions.


Assuntos
Arabidopsis/genética , Transporte Biológico/genética , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Arabidopsis/metabolismo , Endossomos/genética , Endossomos/metabolismo , Transportadores de Nitrato , Organogênese Vegetal/genética , Fosforilação , Proteínas de Plantas/genética , Transdução de Sinais/genética
12.
Plants (Basel) ; 9(4)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295180

RESUMO

Ammonium (NH4+) toxicity is always accompanied by ion imbalances, and NH4+ and potassium (K+) exhibit a competitive correlation in their uptake and transport processes. In Arabidopsis thaliana, the typical leaf chlorosis phenotype in the knockout mutant of calcineurin B-like interacting protein kinase 23 (CIPK23) is high-NH4+-dependent under low-K+ condition. However, the correlation of K+ and NH4+ in the occurrence of leaf chlorosis in the cipk23 mutant has not been deeply elucidated. Here, a modified hydroponic experimental system with different gradients of NH4+ and K+ was applied. Comparative treatments showed that NH4+ toxicity, which is triggered mainly by the high ratio of NH4+ to K+ (NH4+/K+ ≥ 10:1 for cipk23) but not by the absolute concentrations of the ions, results in leaf chlorosis. Under high NH4+/K+ ratios, CIPK23 is upregulated abundantly in leaves and roots, which efficiently reduces the leaf chlorosis by regulating the contents of NH4+ and K+ in plant shoots, while promoting the elongation of primary and lateral roots. Physiological data were obtained to further confirm the role CIPK23 in alleviating NH4+ toxicity. Taken all together, CIPK23 might function in different tissues to reduce stress-induced NH4+ toxicity associated with high NH4+/K+ ratios by regulating the NH4+-K+ balance in Arabidopsis.

13.
Fish Shellfish Immunol ; 101: 176-185, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32244029

RESUMO

Emerging evidence suggests that bitter and sweet Taste receptors (TRs) in the airway are important sentinels of innate immunity. TRs are G protein-coupled receptors that trigger downstream signaling cascades in response to activation of specific ligands. Among them, the T1R family consists of three genes: T1R1, T1R2, and T1R3, which function as heterodimers for sweet tastants and umami tastants. While the other TRs family components T2Rs function as bitter tastants. To understand the relationship between TRs and mucosal immunity in teleost, here, we firstly identified and analyzed the molecular characteristics of three TRs (T1R1, T1R3, and T2R4) in rainbow trout (Oncorhynchus mykiss). Secondly, by quantitative real-time PCR (qPCR), we detected the mRNA expression levels of T1R1, T1R3 and T2R4 and found that the three genes could be tested in all detected tissues (pharynx, buccal cavity, tongue, nose, gill, eye, gut, fin, skin) and the expression levels of T1R3 and T2R4 were higher in buccal mucosa (BM) and pharyngeal mucosa (PM) compare to other tissues. It may suggest that T1R3 and T2R4 play important roles in BM and PM. Then, to analyses the changes of expression levels of the three genes in rainbow trout infected with pathogens, we established three infection models Flavobacterium columnare (F. cloumnare), infectious hematopoietic necrosis virus (IHNV) and Ichthyophthirius multifiliis (Ich). Subsequently, by qPCR, we detected the expression profiles of TRs in the gustatory tissues (BM, PM and skin) of rainbow trout after infection with F. cloumnare, IHNV, and Ich, respectively. We found that under three different infection models, the expression of the T1R1, T1R3 and T2R4 showed their own changes in mRNA levels. And the expression levels of the T1R1, T1R3 and T2R4 changed significantly at different time points in response to three infection models, respectively, suggesting that TRs may be associated with mucosal immunity.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade nas Mucosas/genética , Oncorhynchus mykiss/genética , Sequência de Aminoácidos , Animais , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Infecções por Cilióforos/veterinária , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/imunologia , Infecções por Flavobacteriaceae/imunologia , Infecções por Flavobacteriaceae/microbiologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Perfilação da Expressão Gênica/veterinária , Hymenostomatida/fisiologia , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Oncorhynchus mykiss/imunologia , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Alinhamento de Sequência/veterinária
14.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963602

RESUMO

We have identified a Holstein sire named Tarantino who had been approved for artificial insemination that is based on normal semen characteristics (i.e., morphology, thermoresistance, motility, sperm concentration), but had no progeny after 412 first inseminations, resulting in a non-return rate (NRdev) of -29. Using whole genome association analysis and next generation sequencing, an associated nonsense variant in the α/ß-hydrolase domain-containing 16B gene (ABHD16B) on bovine chromosome 13 was identified. The frequency of the mutant allele in the German Holstein population was determined to be 0.0018 in 222,645 investigated cattle specimens. The mutant allele was traced back to Whirlhill Kingpin (bornFeb. 13th, 1959) as potential founder. The expression of ABHD16B was detected by Western blotting and immunohistochemistry in testis and epididymis of control bulls. A lipidome comparison of the plasma membrane of fresh semen from carriers and controls showed significant differences in the concentration of phosphatidylcholine (PC), diacylglycerol (DAG), ceramide (Cer), sphingomyelin (SM), and phosphatidylcholine (-ether) (PC O-), indicating that ABHD16B plays a role in lipid biosynthesis. The altered lipid contents may explain the reduced fertilization ability of mutated sperms.


Assuntos
Membrana Celular/metabolismo , Fertilização , Hidrolases/metabolismo , Inseminação Artificial/veterinária , Lipídeos/análise , Mutação , Espermatozoides/metabolismo , Animais , Bovinos , Feminino , Estudo de Associação Genômica Ampla , Hidrolases/genética , Inseminação Artificial/métodos , Lipídeos/química , Masculino , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides
15.
Haematologica ; 104(11): 2307-2313, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30846504

RESUMO

Hemophilia B is a classical monogenic, X-chromosomal, recessively transmitted bleeding disorder caused by genetic variants within the coagulation factor IX gene (F9). Although hemophilia B has been described in dogs, it has not yet been reported in the Hovawart breed. Here we describe the identification of a Hovawart family transmitting typical signs of an X-linked bleeding disorder. Five males were reported to suffer from recurrent hemorrhagic episodes. A blood sample from one of these males with only 2% of the normal concentration of plasma factor IX together with samples from seven relatives were provided. Next-generation sequencing of the mother and grandmother revealed a single nucleotide deletion in the F9 promoter. Genotyping of the deletion in 1,298 dog specimens including 720 Hovawarts revealed that the mutant allele was only present in the aforementioned Hovawart family. The deletion is located 73 bp upstream of the F9 start codon in the conserved overlapping DNA binding sites of hepatocyte nuclear factor 4α (HNF-4α) and androgen receptor (AR). The deletion only abolished binding of HNF-4α, while AR binding was unaffected as demonstrated by electrophoretic mobility shift assay using human HNF-4α and AR with double-stranded DNA probes encompassing the mutant promoter region. Luciferase reporter assays using wildtype and mutated promoter fragment constructs transfected into Hep G2 cells showed a significant reduction in expression from the mutant promoter. The data provide evidence that the deletion in the Hovawart family caused a rare type of hemophilia B resembling human hemophilia B Leyden.


Assuntos
Doenças do Cão/diagnóstico , Doenças do Cão/genética , Fator IX/genética , Hemofilia B/veterinária , Mutação Puntual , Regiões Promotoras Genéticas , Deleção de Sequência , Animais , Sítios de Ligação , Cães , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Haplótipos , Linhagem , Fenótipo , Ligação Proteica , Fatores de Transcrição/metabolismo
16.
Sci Total Environ ; 668: 485-499, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852224

RESUMO

Among all the recent improvements in the railway industry, ground vibration remains an important showstopper in metropolitan cities. In some particular cases, significant levels of vibration are felt by residents. The role of engineers is to propose mitigation solutions and to ensure that they are efficient in the long-term. This paper presents a numerical study of a large-scale building close to underground networks. A two-step time-frequency prediction method for train-induced vibrations of a superstructure is proposed in this work. In the first step, the spatial train-track coupled dynamic model in time domain is established and then simulated to obtain the vertical and lateral rail supporting forces (fastener forces). In the second step, the discrete Fourier Transform (DFT) of fastener forces are taken as the external loads of a finite element (FE) model of the track-tunnel-soil-building system to solve the building vibrations. On this basis, train-induced vibrations of the large-scale building are predicted under different train operation conditions, and two relevant standards are adopted to evaluate the building vibrations. Further, a base isolation measure, that consists in installing steel springs between the superstructure and the base, is employed to mitigate excessive building vibration. Results show that the underground train and track interaction could result in over-limit building vibrations. The train moving with a higher speed will deteriorate track vibration level and leads to more serious extent of over-limit vibrations of the larger-scale building. The base isolation measure can effectively reduce the excessive building vibrations, and also ensures the train-induced vibrations of the building to satisfy the relevant standard requirements under the worst train operation conditions.

17.
Virus Genes ; 55(2): 253-256, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30697673

RESUMO

Brassica yellows virus (BrYV), prevalently distributed throughout mainland China and South Korea while triggering serious diseases in cruciferous crops, is proposed to be a new species in the genus Polerovirus within the family Luteoviridae. There are three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) reported in cabbage and radish. Here, we describe a new BrYV isolate infecting tobacco plants in the field, which was named BrYV-NtabQJ. The complete genome sequence of BrYV-NtabQJ is 5741 nt in length, and 89% of the sequence shares higher sequence identities (about 90%) with different BrYV isolates. However, it possesses a quite divergent region within ORF5, which is more close to Beet western yellows virus (BWYV), Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV). A significant recombination event was then detected among BrYV-NtabQJ, BrYV-B Beijng isolate (BrYV-BBJ) and BWYV Leonurus sibiricus isolate (BWYV-LS). It is proposed that BrYV-NtabQJ might be an interspecific recombinant between BrYV-BBJ and BWYV-LS, and the recombination might result in the successful aphid transmission of BrYV from cruciferous crops to tobacco. And it also poses new challenges for BrYV diagnosis and the vegetable production.


Assuntos
Luteoviridae/genética , Nicotiana/virologia , Filogenia , Doenças das Plantas/virologia , Brassica/virologia , Transferência Genética Horizontal/genética , Genoma Viral , Genótipo , Especificidade de Hospedeiro/genética , Luteoviridae/patogenicidade , Luteovirus/genética , Fases de Leitura Aberta , Raphanus/virologia , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...