Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 63(12): 3130-3137, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856457

RESUMO

Numerous applications at the photon-starved regime require a free-space coupling single-photon detector with a large active area, low dark count rate (DCR), and superior time resolutions. Here, we developed a superconducting microstrip single-photon detector (SMSPD), with a large active area of 260 µm in diameter, a DCR of ∼5k c p s, and a low time jitter of ∼171p s, operated at a near-infrared of 1550 nm and a temperature of ∼2.0K. As a demonstration, we applied the detector to a single-pixel galvanometer scanning system and successfully reconstructed the object information in depth and intensity using a time-correlated photon counting technology.

2.
Metabolites ; 14(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38668352

RESUMO

Temperature is vital in plant growth and agricultural fruit production. Litchi chinensis Sonn, commonly known as litchi, is appreciated for its delicious fruit and fragrant blossoms and is susceptible to stress when exposed to low temperatures. This study investigates the effect of two cryoprotectants that counteract cold stress during litchi flowering, identifies the genes that generate the cold resistance induced by the treatments, and hypothesizes the roles of these genes in cold resistance. Whole plants were treated with Bihu and Liangli cryoprotectant solutions to protect inflorescences below 10 °C. The soluble protein, sugar, fructose, sucrose, glucose, and proline contents were measured during inflorescence. Sucrose synthetase, sucrose phosphate synthetase, antioxidant enzymes (SOD, POD, CAT), and MDA were also monitored throughout the flowering stage. Differentially expressed genes (DEGs), gene ontology, and associated KEGG pathways in the transcriptomics study were investigated. There were 1243 DEGs expressed after Bihu treatment and 1340 in the control samples. Signal transduction pathways were associated with 39 genes in the control group and 43 genes in the Bihu treatment group. The discovery of these genes may contribute to further research on cold resistance mechanisms in litchi. The Bihu treatment was related to 422 low-temperature-sensitive differentially accumulated metabolites (DAMs), as opposed to 408 DAMs in the control, mostly associated with lipid metabolism, organic oxidants, and alcohols. Among them, the most significant differentially accumulated metabolites were involved in pathways such as ß-alanine metabolism, polycyclic aromatic hydrocarbon biosynthesis, linoleic acid metabolism, and histidine metabolism. These results showed that Bihu treatment could potentially promote these favorable traits and increase fruit productivity compared to the Liangli and control treatments. More genomic research into cold stress is needed to support the findings of this study.

3.
Opt Express ; 31(10): 16348-16360, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157715

RESUMO

The effective and convenient detection of single photons via advanced detectors with a large active area is becoming significant for quantum and classical applications. This work demonstrates the fabrication of a superconducting microstrip single-photon detector (SMSPD) with a millimeter-scale active area via the use of ultraviolet (UV) photolithography. The performances of NbN SMSPDs with different active areas and strip widths are characterized. SMSPDs fabricated by UV photolithography and electron beam lithography with small active areas are also compared from the aspects of the switching current density and line edge roughness. Furthermore, an SMSPD with an active area of 1 mm × 1 mm is obtained via UV photolithography, and during operation at 0.85 K, it exhibits near-saturated internal detection efficiency at wavelengths up to 800 nm. At a wavelength of 1550 nm, the detector exhibits a system detection efficiency of ∼5% (7%) and a timing jitter of 102 (144) ps, when illuminated with a light spot of ∼18 (600) µm in diameter, respectively.

4.
Org Lett ; 24(41): 7492-7496, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36215416

RESUMO

Herein, we report a convenient solvent-controlled regioselective esterification to access two types of carboxylate esters without any additive or non-green activation strategy. In this transformation, 2-methyleneaziridines served as an ester reagent, providing two alternative electrophilic carbon centers. Notably, this protocol is suitable for some structure-complicated clinical molecules with a carboxylic acid group, presenting remarkable application potential.


Assuntos
Aziridinas , Ésteres , Solventes , Acetona , Ácidos Carboxílicos , Carbono
5.
Opt Express ; 29(7): 11021-11036, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820223

RESUMO

Superconducting nanowire single-photon detectors (SNSPDs) have attracted remarkable interest for visible and near-infrared single-photon detection due to their outstanding performance. However, conventional SNSPDs are generally used as binary photon-counting detectors. Another important characteristic of light, i.e., polarization, which can provide additional information of the object, has not been resolved using the standalone SNSPD. In this work, we present a first prototype of the polarimeter based on a four-pixel superconducting nanowire array, capable of resolving the polarization state of linearly-polarized light at the single-photon level. The detector array design is based on a division of focal plane configuration in which the orientation of each nanowire division (pixel) is offset by 45°. Each single nanowire pixel operates as a combination of a photon detector and almost linear polarization filter, with an average polarization extinction ratio of ∼10. The total system detection efficiency of the array is ∼1% at a total dark count rate of 680 cps, with a timing jitter of 126 ps, when the detector array is free-space coupled and illuminated with 1550-nm photons. The mean errors of the measured angle of polarization and degree of linear polarization were about -3° and 0.12, respectively. Furthermore, we successfully demonstrated polarization imaging at low-light level using the proposed detector. Our results pave the way for the development of a single-photon sensitive, fast, and large-scale integrated polarization polarimeter or imager. Such detector may find promising application in photon-starved polarization resolving and imaging with high spatial and temporal resolution.

6.
Opt Lett ; 46(5): 1049-1052, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649654

RESUMO

We report a compact, scalable, and high-performance superconducting nanowire single-photon detector (SNSPD) array by using a multichannel optical fiber array-coupled configuration. For single pixels with an active area of 18 µm in diameter and illuminated at the telecom wavelength of 1550 nm, we achieved a pixel yield of 13/16 on one chip, an average system detection efficiency of 69% at a dark count rate of 160 cps, a minimum timing jitter of 74 ps, and a maximum count rate of ∼40Mcps. The optical crosstalk coefficient between adjacent channels is better than -60dB. The performance of the fiber array-coupled detectors is comparable with a standalone detector coupled to a single fiber. Our method is promising for the development of scalable, high-performance, and high-yield SNSPDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...