Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(6): 7686-7699, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38289234

RESUMO

The pathogenesis of ulcerative colitis (UC) is associated with the shedding of the gut mucus. Herein, inspired by the biological functions of mucus, growth factors-loaded in situ hydrogel (PHE-EK) was designed for UC treatment by integrating dihydrocaffeic acid-modified poloxamer as a thermosensitive material with hyaluronic acid (colitis-specific adhesive), epigallocatechin-3-gallate (antibacterial agent), and bioactive factors (KPV tripeptide and epidermal growth factor). PHE-EK presented good thermosensitive properties, as a flowable liquid at room temperature and gelled within 10 s when exposed to body temperature. PHE-EK hydrogel presented good mechanical strength with a strain of 77.8%. Moreover, PHE-EK hydrogel displayed antibacterial activity against Escherichia coli. Importantly, in vitro and in vivo adhesive tests showed that the PHE-EK hydrogel could specifically adhere to the inflamed colon via electrostatic interaction. When PHE-EK as a biomimetic mucus was rectally administrated to colitis rats, it effectively hindered the body weight loss, reduced the disease activity index and improved the colonic shorting. Moreover, the expression of pro-inflammatory cytokines (e.g., IL-1ß, IL-6, and TNF-α) at the laminae propria or epitheliums of the colon for colitis rats was substantially inhibited by PHE-EK. Besides, the colonic epitheliums were well rearranged, and the tight junction proteins (Zonula-1 and Claudin-5) between them were greatly upregulated after PHE-EK treatment. Collectively, PHE-EK might be a promising therapy for UC.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Hidrogéis/farmacologia , Biomimética , Temperatura , Colite/metabolismo , Muco/metabolismo , Modelos Animais de Doenças
2.
Angew Chem Int Ed Engl ; 63(9): e202317876, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38193266

RESUMO

Constructing uniform covalent organic framework (COF) film on substrates for electronic devices is highly desirable. Here, a simple and mild strategy is developed to prepare them by polymerization on a solid-liquid interface. The universality of the method is confirmed by the successful preparation of five COF films with different microstructures. These films have large lateral size, controllable thickness, and high crystalline quality. And COF patterns can also be directly achieved on substrates via hydrophilic and hydrophobic interface engineering, which is in favor of preparing device array. For application studies, the PyTTA-TPA (PyTTA: 4,4',4'',4'''-(1,3,6,8-Tetrakis(4-aminophenyl)pyrene and TPA: terephthalaldehyde) COF film has a high photoresponsivity of 59.79 µA W-1 at 420 nm for photoelectrochemical (PEC) detection. When employed as an active material for optoelectronic synaptic devices for the first attempt, it shows excellent light-stimulated synaptic plasticity properties such as short-term plasticity (STP), long-term plasticity (LTP), and the conversion of STP to LTP, which can be used to simulate biological synaptic functions.

3.
J Am Chem Soc ; 145(49): 26900-26907, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38010167

RESUMO

The manipulation of topological architectures in two-dimensional (2D) covalent organic framework (COF) materials for different applications is promising but remains a great challenge. Here, we first report the topology-selective synthesis of two distinct varieties of 2DCOFs, imine-based HT-COFs and benzimidazole-fused BI-HT-COFs, by simply altering acid catalysts. To HT-COFs, a superlattice of 1D channel with a persistent triangular shape is formed via Schiff base reaction, while to BI-HT-COFs, a hexagonal lattice structure with a highly conjugated structure and imidazole linkages is constructed due to an imine-based cyclization reaction. The two COFs exhibited marked differences in their bandgap, chemical stability, molecular adsorption, and catalytic activity, which make them have different fields of application. This work not only diversifies the hexaaminotriphenylene-based 2DCOF topologies but also provides vivid examples of structure-property relationships, which would facilitate fundamental research and potential applications of 2DCOFs.

4.
J Control Release ; 361: 568-591, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572962

RESUMO

Inflammatory bowel diseases (IBDs) treatments have shifted from small-molecular therapeutics to the oncoming biologics. The first-line biologics against the moderate-to-severe IBDs are mainly involved in antibodies against integrins, cytokines and cell adhesion molecules. Besides, other biologics including growth factors, antioxidative enzyme, anti-inflammatory peptides, nucleic acids, stem cells and probiotics have also been explored at preclinical or clinical studies. Biologics with variety of origins have their unique potentials in attenuating immune inflammation or gut mucosa healing. Great advances in use of biologics for IBDs treatments have been archived in recent years. But delivering issues for biologic have also been confronted due to their liable nature. In this review, we will focus on biologics for IBDs treatments in the recent publications; summarize the current landscapes of biologics and their promise to control disease progress. Alternatively, the confronted challenges for delivering biologics will also be analyzed. To combat these drawbacks, some new delivering strategies are provided: firstly, designing the functional materials with high affinity toward biologics; secondly, the delivering vehicle systems to encapsulate the liable biologics; thirdly, the topical adhering delivery systems as enema. To our knowledge, this review is the first study to summarize the updated usage of the oncoming biologics for IBDs, their confronted challenges in term of delivery and the potential combating strategies.


Assuntos
Produtos Biológicos , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação , Sistemas de Liberação de Medicamentos , Citocinas/metabolismo , Produtos Biológicos/uso terapêutico
5.
Int J Pharm ; 642: 123149, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37336301

RESUMO

Because of their poor water-soluble properties and non-specific distribution, most hydrophobic therapeutics had limited benefit for patients with ulcerative colitis. Herein, an in-situ oil-based gel has been developed as a rectal delivery vehicle for these therapeutics. In situ gel-forming oil (BBLG) was composed of soybean phosphatidyl choline (40%, w/w), glyceryl dioleate (50%, w/w), and ethanol (10%, w/w). The hydrophobic laquinimod (LAQ) as a model drug was easily dissolved in gel-forming oil and its solubility was reaching to 7 ± 0.1 mg/mL. Importantly, upon contact with the colonic fluids, the gel-forming oil was quickly transited to a semi-solid gel, adhering to the inflamed colon mucosa and forming a protective barrier. Transmission Electron Microscopy showed that the gel network was arranged by the connected lipid spheres and LAQ was non-crystally encapsulated into the lipid spheres. Moreover, the universal adhesive test showed that the adhesive force and the adhesive energy of BBLG toward fresh colon tissues were 711 ± 12 mN and 25 ± 2 J/m2, which was 2.14-fold and 5-fold higher than that of the marketed Poloxamer 407 gel, respectively. Meanwhile, in vivo imaging confirmed that the retention time of BBLG in the colon lumen was more than 8 h after rectal administration. In vivo animal studies showed that BBLG also greatly enhanced the therapeutic impact of LAQ on TNBS-treated rats with ulcerative colitis, as evidenced by reduced disease activity index (DAI) scores and weight loss. Moreover, the colonic inflammation was significantly alleviated and the goblet cells were obliviously restored after treatment. Importantly, the gut mucosa barrier was largely repaired without any formation of fibrosis remodeling. Conclusively, in situ liquid gel may be a potential delivery system of hydrophobic medicines for ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Ratos , Animais , Colite Ulcerativa/tratamento farmacológico , Colo , Inflamação/tratamento farmacológico , Administração Retal , Lipídeos , Modelos Animais de Doenças , Colite/tratamento farmacológico
6.
Mater Today Bio ; 20: 100654, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214550

RESUMO

Montmorillonite (MMT), a layered aluminosilicate, has a mucosal nutrient effect and restores the gut barriers integrity. However, orally administrating MMT is not effective to combat the reactive oxygen species (ROS) and alleviate the acute inflammatory relapse for colitis patients. Herein, polydopamine-doped montmorillonite micro-sheets (PDA/MMT) have been developed as a therapeutic platform for colitis treatment. SEM and EDS analysis showed that dopamine monomer (DA) was easily polymerized in alkaline condition and polydopamine (PDA) was uniformly cladded on the surface of MMT micro-sheets. The depositing amount of PDA was reaching to 2.06 â€‹± â€‹0.08%. Moreover, in vitro fluorescence probes experiments showed that PDA/MMT presented the broad spectra of scavenging various ROS sources including •OH, •O2-, and H2O2. Meanwhile, the intracellular ROS of Rosup/H2O2 treated Caco-2 â€‹cell was also effectively scavenged by PDA/MMT, which resulted in the obvious improvement of the cell viability under oxidative stress. Moreover, most of orally administrated PDA/MMT was transited to the gut and form a protective film on the diseased colon. PDA/MMT exhibited the obvious therapeutic effect on DSS-induced ulcerative colitis mouse. Importantly, the gut mucosa of colitis mouse was well restored after PDA/MMT treatment. Moreover, the colonic inflammation was significantly alleviated and the goblet cells were obliviously recovered. The therapeutic mechanism of PDA/MMT was highly associated with inhibiting oxidative stress. Collectively, PDA/MMT micro-sheets as a therapeutic platform may provide a promising therapeutic strategy for UC treatment.

7.
Int J Biol Macromol ; 231: 123323, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669631

RESUMO

Ulcerative colitis (UC) is a chronic recurrent disease affecting the gastrointestinal tract especially colorectum. Keratinocyte growth factor (KGF) plays the vital roles in maintaining the colonic mucosal barrier. The poor stability and off-target of KGF were two hindering factors for its clinical application. Herein, in situ hydrogel (PE) with mucoadhesive ability was constructed by using temperature-sensitive poloxamer and EGCG as hydrogel-forming material and adhesive enhancer, respectively. Incorporation of EGCG led to the slight decrease of the gelled temperature and shortened the gelled time of PE hydrogel. When the concentration of EGCG is 0.1 %, PE hydrogel exhibits the suitable viscosity of 280 ± 20 Pa·s and the strong adhesive force of 725 ± 25 mN. KGF was soluble in cold PE solution to obtain KGF-loaded PE hydrogel (KGF@PE). PE hydrogel could improve the stability of KGF in vitro. KGF@PE not only could recover greatly the body weight of TNBS-induced rats but also repair their colonic morphology and goblet cell function. Moreover, the potential of repairing the epithelial barrier was indicated by upregulating tight junction proteins. Importantly, the safety of KGF@PE hydrogel for colitis was also confirmed on AOM/DSS-induced mice models. Conclusively, KGF@PE may be a promising therapeutic platform without obvious side effect for ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Ratos , Camundongos , Animais , Colite Ulcerativa/tratamento farmacológico , Hidrogéis/farmacologia , Fator 7 de Crescimento de Fibroblastos/farmacologia , Adesivos/farmacologia , Colo/metabolismo , Modelos Animais de Doenças , Sulfato de Dextrana/efeitos adversos , Mucosa Intestinal/metabolismo , Colite/metabolismo
9.
Biomater Adv ; 144: 213202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36434928

RESUMO

Current bioceramic scaffolds for critical-size bone defects are still facing various challenges such as the poor capability of self-resorption, vascularization and osteogenesis. Herein, a composite scaffold (HOD) is fabricated by integrating bioactive coatings of konjac glucomannan (KGM) and deferoxamine (DFO) into porous hydroxyapatite scaffold (HA), where KGM coating induces the self-resorption of HOD after implanting and DFO promoted the vascularization at the defected bone. Porous HA scaffolds with 200-400 µm of pore sizes were prepared and these bioactive coatings were successfully deposited on the scaffold, which was confirmed by SEM. MC3T3-E1 cells could be tightly attached to the pore wall of HOD and the obvious osteogenic differentiation was clearly displayed after 14 days of co-culture. Besides, HOD displayed the potential of promoting the vascularization of HUVECs. Importantly, the accelerated degradation of HOD was observed in a macrophage-associated acidic medium, which led to the self-resorption of HOD in vivo. Micro-CT images showed that HOD was gradually replaced by newly formed bone, achieving a balance between the new bone formation and the scaffold degradation. The rapid bone repairing of the femoral defects in rats was displayed for HOD in comparison to the HA scaffold. Moreover, the therapeutic mechanism of HOD was highly associated with promoted osteogenesis and vascularization. Collectively, the porous ceramic scaffold orchestrated with bioactive coatings may be a promising strategy for repairing of the large bone defect.


Assuntos
Durapatita , Osteogênese , Ratos , Animais , Alicerces Teciduais , Engenharia Tecidual/métodos , Porosidade
10.
Acta Biomater ; 157: 467-486, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460288

RESUMO

Diabetic wounds are challenging to heal due to complex pathogenic abnormalities. Routine treatment with acid fibroblast growth factor (aFGF) is widely used for diabetic wounds but hardly offers a satisfying outcome due to its instability. Despite the emergence of various nanoparticle-based protein delivery approaches, it remains challenging to engineer a versatile delivery system capable of enhancing protein stability without the need for complex preparation. Herein, a polyphenol-driven facile assembly of nanosized coacervates (AE-NPs) composed of aFGF and Epigallocatechin-3-gallate (EGCG) was constructed and applied in the healing of diabetic wounds. First, the binding patterns of EGCG and aFGF were predicted by molecular docking analysis. Then, the characterizations demonstrated that AE-NPs displayed higher stability in hostile conditions than free aFGF by enhancing the binding activity of aFGF to cell surface receptors. Meanwhile, the AE-NPs also had a powerful ability to scavenge reactive oxygen species (ROS) and promote angiogenesis, which significantly accelerated full-thickness excisional wound healing in diabetic mice. Besides, the AE-NPs suppressed the early scar formation by improving collagen remodeling and the mechanism was associated with the TGF-ß/Smad signaling pathway. Conclusively, AE-NPs might be a potential and facile strategy for stabilizing protein drugs and achieving the scar-free healing of diabetic wounds. STATEMENT OF SIGNIFICANCE: Diabetic chronic wound is among the serious complications of diabetes that eventually cause the amputation of limbs. Herein, a polyphenol-driven facile assembly of nanosized coacervates (AE-NPs) composed of aFGF and EGCG was constructed. The EGCG not only acted as a carrier but also possessed a therapeutic effect of ROS scavenging. The AE-NPs enhanced the binding activity of aFGF to cell surface receptors on the cell surface, which improved the stability of aFGF in hostile conditions. Moreover, AE-NPs significantly accelerated wound healing and improved collagen remodeling by regulating the TGF-ß/Smad signaling pathway. Our results bring new insights into the field of polyphenol-containing nanoparticles, showing their potential as drug delivery systems of macromolecules to treat diabetic wounds.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio , Cicatrização , Cicatriz , Colágeno/farmacologia , Fator de Crescimento Transformador beta/farmacologia
11.
Int J Biol Macromol ; 222(Pt B): 2729-2743, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240893

RESUMO

The general treatment of diabetic wound was use of wound dressings to absorb excess exudate. However, traditional wound dressings neither mimic the skin-like properties nor easily be withdrawn from the wound. Herein, the skin-adaptive three-layered films (AGB) dressing has been designed by alternatively depositing phenylboronic acid-grafted γ-PGA (PBA-PGA) and polyvinyl alcohol (PVA). The thickness of AGB film was only 479 µm and its flexibility was obviously strengthen by the boronic ester cross-linking. Besides, the dry AGB film was conveniently adhered to the fresh wound, where its adhesive force reached to 1267 ± 330 mN. Moreover, the adhered AGB film was easily peeled without any second damage after hydration. An anti-inflammatory tripeptide (KPV) and epidermal growth factor (EGF) as biologic factors were respectively encapsulated in the bottom layer and the middle-top two layers of AGB film. KPV was firstly released within 3 day and EGF was subsequently released in a glucose-responsive manner. AGB film containing KPV and EGF (K-E-AGB) could significantly improve the repair rate of full-thickness skin wound on diabetic mice. The mechanism of wound healing was associated with inflammatory inhibition, angiogenesis and collagen deposition. Collectively, skin-adaptive film may be a promising dressing as delivery of biologic factors for the chronic wound.


Assuntos
Diabetes Mellitus Experimental , Fator de Crescimento Epidérmico , Camundongos , Animais , Fator de Crescimento Epidérmico/farmacologia , Cicatrização , Diabetes Mellitus Experimental/metabolismo , Bandagens , Colágeno/química
12.
J Control Release ; 350: 93-106, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35973472

RESUMO

Diabetic foot ulcer (DFU) is a devastating complication in diabetes patients, imposing a high risk of amputation and economic burden on patients. Sustained inflammation and angiogenesis hindrance are thought to be two key drivers of the pathogenesis of such ulcers. Nitric oxide (NO) has been proven to accelerate the healing of acute or chronic wounds by modulating inflammation and angiogenesis. However, the use of gas-based therapeutics is difficult for skin wounds. Herein, therapeutic NO gas was first prepared as stable microbubbles, followed by incorporation into a cold Poloxamer-407 (P407) solution. Exposed to the DFU wound, the cold P407 solution would rapidly be transformed into a semisolid hydrogel under body temperature and accordingly capture NO microbubbles. The NO microbubble-captured hydrogel (PNO) was expected to accelerate wound healing in diabetic feet. The NO microbubbles had an average diameter of 0.8 ± 0.4 µm, and most of which were captured by the in situ P407 hydrogel. Moreover, the NO microbubbles were evenly distributed inside the hydrogel and kept for a longer time. In addition, the gelling temperature of 30% (w/v) P407 polymer (21 °C) was adjusted to 31 °C for the PNO gel, which was near the temperature of the skin surface. Rheologic studies showed that the PNO gel had mechanical strength comparable with that of the P407 hydrogel. The cold PNO solution was conveniently sprayed or smeared on the wound of DFU and rapidly gelled. In vivo studies showed that PNO remarkably accelerated wound healing in rats with DFU. Moreover, the sustained inflammation at the DFU wound was largely reversed by PNO, as reflected by the decreased levels of proinflammatory cytokines (IL-1ß, IL-6 and TNF-α) and the increased levels of anti-inflammatory cytokines (IL-10, IL-22 and IL-13). Meanwhile, angiogenesis was significantly promoted by PNO, resulting in rich blood perfusion at the DFU wounds. The therapeutic mechanism of PNO was highly associated with polarizing macrophages and maintaining the homeostasis of the extracellular matrix. Collectively, PNO gel may be a promising vehicle of therapeutic NO gas for DFU treatment.


Assuntos
Diabetes Mellitus , Pé Diabético , Animais , Citocinas , Pé Diabético/tratamento farmacológico , Pé Diabético/patologia , Hidrogéis , Inflamação , Interleucina-10 , Interleucina-13 , Interleucina-6 , Neovascularização Patológica , Óxido Nítrico , Poloxâmero , Ratos , Fator de Necrose Tumoral alfa , Cicatrização
13.
Acta Biomater ; 143: 233-252, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245681

RESUMO

Ulcerative colitis (UC) usually occurs in the superficial mucosa of the colorectum. Here, a double-network hydrogel (PMSP) was constructed from maleimided γ-polyglutamic acid and thiolated γ-polyglutamic acid through crosslinking of thiol-maleimide and self-oxidized thiols. PMSP with a negative charge specifically adhered to the inflamed mucosa with positively charged proteins rather than to the healthy mucosa. PMSP exhibited good mechanical strength with storage modulus (G') of 17.6 Pa and a linear viscoelastic region (LVR) of 107.2% strain. Moreover, PMSP showed a stronger bio-adhesive force toward the inflamed tissue-mimicking substrate than toward its healthy counterpart. In vivo imaging confirmed that PMSP specifically adhered to the inflamed colonic mucosa of rats with TNBS-induced UC. KPV (Lys-Pro-Val) as a model drug was easily captured by PMSP through electrostatic interactions, thus retaining its bioactivity for a longer time under high temperature conditions. Moreover, the alleviating effect of KPV on rats with TNBS-induced colitis was significantly improved by PMSP after intracolonic administration. The epithelial barrier of the colon also effectively recovered following PMSP-KPV treatment. PMSP-KPV also modulated the gut flora, markedly augmenting the abundance of beneficial microorganisms in gut homeostasis. The mechanism by which PMSP-KPV induces a therapeutic effect may be associated with the inhibition of oxidative stress. Conclusively, the PMSP hydrogel seems to be a promising rectal delivery system for the therapy of UC. STATEMENT OF SIGNIFICANCE: Ulcerative colitis (UC) is a chronic and relapsing disease of the gastrointestinal tract. A key therapeutic approach to treat UC is to repair the mucosal barriers. Here, a double-network hydrogel (PMSP) was constructed from maleimided and thiolated γ-polyglutamic acid through crosslinking of thiol-maleimide and self-oxidized thiols. The negatively charged PMSP specifically adhered to the inflamed colon rather than its healthy counterpart and was retained for a longer time. KPV as a model drug was easily captured by PMSP, which provided better stability to KPV when exposed to high temperature of 50 °C. The epithelial mucosal barrier of the colon was effectively recovered by the rectal administration of PMSP-KPV to rats with TNBS-induced UC. Moreover, PMSP-KPV modulated the gut flora of colitic rats, markedly augmenting the abundance of beneficial microorganisms. Conclusively, PMSP seems to be a promising rectal delivery system for UC therapy.


Assuntos
Colite Ulcerativa , Hidrogéis , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo , Hidrogéis/química , Mucosa Intestinal/metabolismo , Ácido Poliglutâmico/farmacologia , Ratos , Compostos de Sulfidrila/farmacologia
14.
J Chromatogr A ; 1662: 462720, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34902717

RESUMO

In this study, a series of the functionalized mesoporous polystyrene-based microspheres (FMPMs) with different functional comonomers (acrylamide, AM; ethyleneglycol dimethacrylate, EGDMA; hydroxyethyl methacrylate, HEMA) and ratios of styrene (St) to divinylbenzene (DVB) were designed and synthesized by a double emulsion interface polymerization method. Among them, St and DVB existed in the oil phase, forming the skeleton structure of FMPMs. AM, EGDMA or HEMA in the water phase formed functional layers on the inner and outer surfaces of FMPMs. The experimental results indicated that the optimal functional comonomers and the ratio of St to DVB were AM (provided the hydrophilic -CONH2 groups) and 1:1, respectively. Thus, A-FMPMs-2 exhibited the highest adsorption capacity of 108.95 ± 8.13 mg/g and the selectivity of 5.14 ± 0.17. These results were attributed to the hydrophilic -CONH2 groups on A-FMPMs-2, and these groups were beneficial to ACT molecules diffusion driven by concentration gradient, improving the adsorption performance. Furthermore, hydrophilic -CONH2 groups on the inner and outer surfaces of A-FMPMs-2 acted as hydrophilic sites that had a high-affinity interaction with ACT molecules, thus increasing the adsorption selectivity. In addition, A-FMPMs-2 had the highest specific surface area and largest pore volume, resulting in the highest adsorption capacity and adsorption selectivity. Therefore, the development of adsorbents with adjustable pore structure and a large number of hydrophilic sites will provide a new strategy for selective separation of bioactive components from natural products.


Assuntos
Poliestirenos , Adsorção , Emulsões , Microesferas , Polimerização
15.
Biomater Sci ; 10(1): 227-242, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34846053

RESUMO

The self-healing of chemotherapy-induced oral mucositis is difficult in practice because of both local bacterial infection and severe inflammation. Herein, in situ mucoadhesive hydrogels (PPP_E) were successfully prepared by using temperature-sensitive PLGA-PEG-PLGA (PPP) as a matrix and epigallocatechin-3-gallate (EGCG) with inherent antibacterial activity as an adhesion enhancer. A series of PPP_E precursor solutions with various EGCG concentrations (1%, 2% and 5%) were prepared by fixing the PPP concentration at 25%. EGCG slightly decreased the sol-gel transition temperature and shortened the sol-gel transition time of the PPP hydrogel. Moreover, the incorporation of EGCG could significantly increase the tissue adhesion properties of the PPP hydrogel at 37 °C. PPP_2%E displayed a suitable gelation temperature (36.2 °C), gelation time (100 s) and storage modulus (48 Pa). Tripeptide KPV as a model drug was easily dissolved in cold PPP_2%E precursor solution to prepare KPV@PPP_2%E hydrogel. The anti-inflammatory activity and promotion of cell migration potential by KPV in PPP-2% E hydrogel were well maintained. Moreover, KPV@PPP_2%E exhibited strong antibacterial efficacy against S. aureus. PPP_2%E precursor solution rapidly transformed to a hydrogel and adhered to the wound surface for 7 hours when administrated to the gingival mucosa of rats. Treatment with KPV@PPP_2%E hydrogel greatly improved the food intake and body weight recovery of rats with chemotherapy-induced oral mucositis. Moreover, the tissue morphology of the ulcerated gingiva after application of KPV@PPP_E hydrogel was also well repaired by promoting CK10 and PCNA expression. In addition, the inflammatory cytokines including IL-1ß and TNF-α were significantly inhibited by KPV@PPP_2%E hydrogel while IL-10 was up-regulated. KPV@PPP_2%E hydrogel also had an anti-bacterial effect on MRSA-infected gingival ulcer wounds, which resulted in the obvious inhibition of infiltration by inflammatory cells into submucosal tissues. Conclusively, KPV@PPP_E may be a promising practical application for cancer patients with chemotherapy-induced oral mucositis.


Assuntos
Antineoplásicos , Estomatite , Animais , Antibacterianos , Anti-Inflamatórios/farmacologia , Humanos , Hidrogéis , Ratos , Staphylococcus aureus , Estomatite/induzido quimicamente , Estomatite/tratamento farmacológico
16.
ACS Biomater Sci Eng ; 7(10): 4859-4869, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547895

RESUMO

KPV (Lys-Pro-Val), which is a tripeptide derived from α-MSH (α-melanocyte-stimulating hormone), has an anti-inflammatory effect on colitis. However, KPV solution is very unstable when rectally administered, compromising its therapeutic efficacy. Herein, cysteamine-grafted γ-polyglutamic acid (SH-PGA) was synthesized by conjugating cysteamine with the carboxyl groups of γ-PGA. The synthesized SH-PGA has the thiol grafting amount of 4.5 ± 0.3 mmol/g. Without the use of the cross-linker, the SH-PGA hydrogel with 4% of the polymer was formed by self-cross-linking of thiol groups. Moreover, the formation of the SH-PGA hydrogel was not affected by KPV. The KPV/SH-PGA hydrogel presented higher elastic modulus (G') than the corresponding viscous modulus (G″) at 0.01-10 Hz, exhibiting good mechanical stability. The KPV/SH-PGA hydrogel presented a shear-thinning behavior, which was helpful for rectal administration. Only 30% of KPV was released from the KPV/SH-PGA hydrogel within 20 min, followed by a sustained-release behavior. Importantly, the stability of KPV in the SH-PGA hydrogel was obviously enhanced, which was presented by detecting its anti-inflammatory activity and promoting cell migration potential after 2 h of exposure to 37 °C. The enhanced therapeutic effect of the KPV/SH-PGA hydrogel on colitis was confirmed on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced ulcerative colitis rats. The colitis symptoms including body weight loss and the disease activity index score were obviously attenuated by rectally administering the KPV/SH-PGA hydrogel. Besides, the KPV/SH-PGA hydrogel treatment prevented the colon shortening of TNBS-infused rats and decreased the colonic myeloperoxidase level. The morphology of the colon including the epithelial barrier, crypt, and intact goblet cells was recovered after KPV/SH-PGA hydrogel treatment. Besides, the KPV/SH-PGA hydrogel decreased the expression of proinflammatory cytokines such as tumor necrosis factor α and interleukin 6. Collectively, the KPV/SH-PGA hydrogel may provide a promising strategy for the treatment of ulcerative colitis.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/induzido quimicamente , Cisteamina , Hidrogéis , Ácido Poliglutâmico/análogos & derivados , Ratos , Ácido Trinitrobenzenossulfônico/toxicidade
17.
Front Pharmacol ; 12: 648708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295244

RESUMO

Hepatocellular carcinoma is a malignant tumor with high morbidity and mortality, a highly effective treatment with low side effects and tolerance is needed. Photothermal immunotherapy is a promising treatment combining photothermal therapy (PTT) and immunotherapy. PTT induces the release of tumor-associated antigens by ablating tumor and Ganoderma lucidum polysaccharides (GLP) enhance the antitumor immunity. Results showed that Indocyanine Green (ICG) was successfully encapsulated into SF-Gel. ICG could convert light to heat and SF-Gel accelerates the photothermal effect in vitro and in vivo. PTT based on ICG/ICG-SF-Gel inhibited the growth of primary and distal tumors, GLP enhanced the inhibitory efficacy. ICG/ICG-SF-Gel-based PTT and GLP immunotherapy improved the survival time. ICG/ICG-SF-Gel-based PTT induces tumor necrosis and GLP enhanced the photothermal efficacy. ICG/ICG-SF-Gel-based PTT inhibited cell proliferation and angiogenesis, induced cell apoptosis, enhanced cellular immunity, and GLP enhanced these effects. In conclusion, GLP could enhance the abscopal effect of PTT in Hepatoma-bearing mice.

18.
Bioact Mater ; 6(10): 3177-3191, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778197

RESUMO

Oxidation resistance 1 (OXR1) is regarded as a critical regulator of cellular homeostasis in response to oxidative stress. However, the role of OXR1 in the neuronal response to spinal cord injury (SCI) remains undefined. On the other hand, gene therapy for SCI has shown limited success to date due in part to the poor utility of conventional gene vectors. In this study, we evaluated the function of OXR1 in SCI and developed an available carrier for delivering the OXR1 plasmid (pOXR1). We found that OXR1 expression is remarkably increased after SCI and that this regulation is protective after SCI. Meanwhile, we assembled cationic nanoparticles with vitamin E succinate-grafted ε-polylysine (VES-g-PLL) (Nps). The pOXR1 was precompressed with Nps and then encapsulated into cationic liposomes. The particle size of pOXR1 was compressed to 58 nm, which suggests that pOXR1 can be encapsulated inside liposomes with high encapsulation efficiency and stability to enhance the transfection efficiency. The agarose gel results indicated that Nps-pOXR1-Lip eliminated the degradation of DNA by DNase I and maintained its activity, and the cytotoxicity results indicated that pOXR1 was successfully transported into cells and exhibited lower cytotoxicity. Finally, Nps-pOXR1-Lip promoted functional recovery by alleviating neuronal apoptosis, attenuating oxidative stress and inhibiting inflammation. Therefore, our study provides considerable evidence that OXR1 is a beneficial factor in resistance to SCI and that Nps-Lip-pOXR1 exerts therapeutic effects in acute traumatic SCI.

19.
Mater Sci Eng C Mater Biol Appl ; 122: 111877, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33641893

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have been presented to regulate the migration and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under magnetic field (MF). However, the toxicity and short residence for the massively exposed SPIONs at bone defects compromises their practical application. Herein, SPIONs were encapsulated into PLGA microspheres to overcome these shortcomings. Three types of PLGA microspheres (PFe-I, PFe-II and PFe-III) were prepared by adjusting the feeding amount of SPIONs, in which the practical SPIONs loading amounts was 1.83%, 1.38% and 1.16%, respectively. The average diameter of the fabricated microspheres ranged from 160 µm to 200 µm, having the porous and rough surfaces displayed by SEM. Moreover, they displayed the magnetic property with a saturation magnetization of 0.16 emu/g. In vitro cell studies showed that most of BMSCs were adhered on the surface of PFe-II microspheres after 2 days of co-culture. Moreover, the osteoblasts differentiation of BMSCs was significantly promoted by PFe-II microspheres after 2 weeks of co-culture, as shown by detecting osteogenesis-related proteins expressions of ALP, COLI, OPN and OCN. Afterward, PFe-II microspheres were surgically implanted into the defect zone of rat femoral bone, followed by exposure to an external MF, to evaluate their bone repairing effect in vivo. At 6th week after treatment with PFe-II + MF, the bone mineral density (BMD, 263.97 ± 25.99 mg/cm3), trabecular thickness (TB.TH, 0.58 ± 0.08 mm), and bone tissue volume/total tissue volume (BV/TV, 78.28 ± 5.01%) at the defect zone were markedly higher than that of the PFe-II microspheres alone (BMD, 194.34 ± 26.71 mg/cm3; TB.TH, 0.41 ± 0.07 mm; BV/TV, 50.49 ± 6.41%). Moreover, the higher expressions of ALP, COLI, OPN and OCN in PFe-II + MF group were displayed in the repairing bone. Collectively, magnetic PLGA microspheres together with MF may be a promising strategy for repairing bone defects.


Assuntos
Células-Tronco Mesenquimais , Animais , Osso e Ossos , Diferenciação Celular , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos , Microesferas , Osteogênese , Ratos
20.
Acta Biomater ; 122: 111-132, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444802

RESUMO

Diabetic nephropathy (DN) is one of the most serious complications of diabetes mellitus. The combination of insulin (Ins) with liraglutide (Lir) has a greater potential for preventing DN than monotherapy. However, the renal protective effect of the combined Ins/Lir therapy is largely compromised due to their short half-lives after subcutaneous injection. Herein, a glucose-responsive hydrogel was designed in situ forming the dynamic boronic esters bonds between phenylboronic acid-grafted γ-Polyglutamic acid (PBA-PGA) and konjac glucomannan (KGM). It was hypothesized that the KGM/PBA-PGA hydrogel as the delivery vehicle of Ins/Lir would enhance the combinational effect of the latter on preventing the DN progress. Scan electronic microscopy and rheological studies showed that KGM/PBA-PGA hydrogel displayed good glucose-responsive property. Besides, the glucose-sensitive release profile of either Ins or Lir from KGM/PBA-PGA hydrogel was uniformly displayed at hyperglycemic level. Furthermore, the preventive efficacy of KGM/PBA-PGA hydrogel incorporating insulin and liraglutide (Ins/Lir-H) on DN progress was evaluated on streptozotocin-induced rats with diabetic mellitus (DM). At 6 weeks after subcutaneous injection of Ins/Lir-H, not only the morphology of kidneys was obviously recovered as shown by ultrasonography, but also the renal hemodynamics was significantly improved. Meanwhile, the 24-h urinary protein and albumin/creatinine ratio were well modulated. Inflammation and fibrosis were also largely inhibited. Besides, the glomerular NPHS-2 was obviously elevated after treatment with Ins/Lir-H. The therapeutic mechanism of Ins/Lir-H was highly associated with the alleviation of oxidative stress and activation of autophagy. Conclusively, the better preventive effect of the combined Ins/Lir via KGM/PBA-PGA hydrogel on DN progress was demonstrated as compared with their mixed solution, suggesting KGM/PBA-PGA hydrogel might be a potential vehicle of Ins/Lir to combat the progression of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Glucose , Hidrogéis/farmacologia , Insulina/farmacologia , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...