Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 662: 76-83, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37099813

RESUMO

Human induced pluripotent stem cells (hiPSCs) genetically depleted of human leucocyte antigen (HLA) class I expression can bypass T cell alloimmunity and thus serve as a one-for-all source for cell therapies. However, these same therapies may elicit rejection by natural killer (NK) cells, since HLA class I molecules serve as inhibitory ligands of NK cells. Here, we focused on testing the capacity of endogenously developed human NK cells in humanized mice (hu-mice) using MTSRG and NSG-SGM3 strains to assay the tolerance of HLA-edited iPSC-derived cells. High NK cell reconstitution was achieved with the engraftment of cord blood-derived human hematopoietic stem cells (hHSCs) followed by the administration of human interleukin-15 (hIL-15) and IL-15 receptor alpha (hIL-15Rα). Such "hu-NK mice" rejected HLA class I-null hiPSC-derived hematopoietic progenitor cells (HPCs), megakaryocytes and T cells, but not HLA-A/B-knockout, HLA-C expressing HPCs. To our knowledge, this study is the first to recapitulate the potent endogenous NK cell response to non-tumor HLA class I-downregulated cells in vivo. Our hu-NK mouse models are suitable for the non-clinical evaluation of HLA-edited cells and will contribute to the development of universal off-the-shelf regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Animais , Camundongos , Células Matadoras Naturais , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos T , Antígenos HLA/metabolismo
2.
Nat Biomed Eng ; 7(1): 24-37, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36509913

RESUMO

The effectiveness of chimaeric antigen receptor (CAR) T-cell immunotherapies against solid tumours relies on the accumulation, proliferation and persistency of T cells at the tumour site. Here we show that the proliferation of CD8αß cytotoxic CAR T cells in solid tumours can be enhanced by deriving and expanding them from a single human induced-pluripotent-stem-cell clone bearing a CAR selected for efficient differentiation. We also show that the proliferation and persistency of the effector cells in the tumours can be further enhanced by genetically knocking out diacylglycerol kinase, which inhibits antigen-receptor signalling, and by transducing the cells with genes encoding for membrane-bound interleukin-15 (IL-15) and its receptor subunit IL-15Rα. In multiple tumour-bearing animal models, the engineered hiPSC-derived CAR T cells led to therapeutic outcomes similar to those of primary CD8 T cells bearing the same CAR. The optimization of effector CAR T cells derived from pluripotent stem cells may aid the development of long-lasting antigen-specific T-cell immunotherapies for the treatment of solid tumours.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Animais , Humanos , Receptores de Antígenos de Linfócitos T/genética , Células-Tronco Pluripotentes Induzidas/patologia , Linfócitos T CD8-Positivos , Neoplasias/terapia , Proliferação de Células
3.
Mol Ther Methods Clin Dev ; 26: 15-25, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35755947

RESUMO

In order to expand the promise of regenerative medicine using allogeneic induced pluripotent stem cells (iPSCs), precise and efficient genome editing of human leukocyte antigen (HLA) genes would be advantageous to minimize the immune rejection caused by mismatches of HLA type. However, clinical-grade genome editing of multiple HLA genes in human iPSC lines remains unexplored. Here, we optimized the protocol for good manufacturing practice (GMP)-compatible CRISPR-Cas9 genome editing to deplete the three gene locus (HLA-A, HLA-B, and CIITA genes) simultaneously in HLA homozygous iPSCs. The use of HLA homozygous iPSCs has one main advantage over heterozygous iPSCs for inducing biallelic knockout by a single gRNA. RNA-seq and flow cytometry analyses confirmed the successful depletion of HLAs, and lineage-specific differentiation into cardiomyocytes was verified. We also confirmed that the pluripotency of genome-edited iPSCs was successfully maintained by the three germ layers of differentiation. Moreover, whole-genome sequencing, karyotyping, and optical genome mapping analyses revealed no evident genomic abnormalities detected in some clones, whereas unexpected copy number losses, chromosomal translocations, and complex genomic rearrangements were observed in other clones. Our results indicate the importance of multidimensional analyses to ensure the safety and quality of the genome-edited cells. The manufacturing and assessment pipelines presented here will be the basis for clinical-grade genome editing of iPSCs.

4.
STAR Protoc ; 2(4): 100965, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34825222

RESUMO

Selection-free, scarless genome editing in human pluripotent stem cells (PSCs) by utilizing ribonucleoprotein (RNP) of CRISPR-Cas9 is a useful tool for a variety of applications. However, the process can be hampered by time-consuming subcloning steps and inefficient delivery of the RNP complex and ssDNA template. Here, we describe the optimized protocol to introduce a single nucleotide change or a loxP site insertion in feeder-free, xeno-free iPSCs by utilizing MaxCyte and 4D-Nucleofector electroporators. For complete details on the use and execution of this protocol, please refer to Kagita et al. (2021) and Xu et al. (2019).


Assuntos
Sistemas CRISPR-Cas/genética , Eletroporação/métodos , Edição de Genes/métodos , Células-Tronco Pluripotentes , Ribonucleoproteínas , Adulto , DNA de Cadeia Simples/genética , Feminino , Recombinação Homóloga/genética , Humanos , Masculino , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
5.
Nat Biomed Eng ; 5(5): 429-440, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34002062

RESUMO

Avoiding the immune rejection of transplanted T cells is central to the success of allogeneic cancer immunotherapies. One solution to protecting T-cell grafts from immune rejection involves the deletion of allogeneic factors and of factors that activate cytotoxic immune cells. Here we report the generation of hypoimmunogenic cancer-antigen-specific T cells derived from induced pluripotent stem cells (iPSCs) lacking ß2-microglobulin, the class-II major histocompatibility complex (MHC) transactivator and the natural killer (NK) cell-ligand poliovirus receptor CD155, and expressing single-chain MHC class-I antigen E. In mouse models of CD20-expressing leukaemia or lymphoma, differentiated T cells expressing a CD20 chimeric antigen receptor largely escaped recognition by NKG2A+ and DNAM-1+ NK cells and by CD8 and CD4 T cells in the allogeneic recipients while maintaining anti-tumour potency. Hypoimmunogenic iPSC-derived T cells may contribute to the creation of off-the-shelf T cell immunotherapies.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Leucemia/terapia , Linfoma/terapia , Receptores Virais/genética , Linfócitos T/transplante , Microglobulina beta-2/genética , Animais , Antígenos de Diferenciação de Linfócitos T/metabolismo , Diferenciação Celular , Linhagem Celular , Técnicas de Inativação de Genes , Engenharia Genética , Humanos , Células-Tronco Pluripotentes Induzidas/imunologia , Leucemia/imunologia , Linfoma/imunologia , Masculino , Camundongos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Stem Cell Reports ; 16(4): 985-996, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33711268

RESUMO

Combined with CRISPR-Cas9 technology and single-stranded oligodeoxynucleotides (ssODNs), specific single-nucleotide alterations can be introduced into a targeted genomic locus in induced pluripotent stem cells (iPSCs); however, ssODN knockin frequency is low compared with deletion induction. Although several Cas9 transduction methods have been reported, the biochemical behavior of CRISPR-Cas9 nuclease in mammalian cells is yet to be explored. Here, we investigated intrinsic cellular factors that affect Cas9 cleavage activity in vitro. We found that intracellular RNA, but not DNA or protein fractions, inhibits Cas9 from binding to single guide RNA (sgRNA) and reduces the enzymatic activity. To prevent this, precomplexing Cas9 and sgRNA before delivery into cells can lead to higher genome editing activity compared with Cas9 overexpression approaches. By optimizing electroporation parameters of precomplexed ribonucleoprotein and ssODN, we achieved efficiencies of single-nucleotide correction as high as 70% and loxP insertion up to 40%. Finally, we could replace the HLA-C1 allele with the C2 allele to generate histocompatibility leukocyte antigen custom-edited iPSCs.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Oligodesoxirribonucleotídeos/metabolismo , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Alelos , Antibacterianos/farmacologia , Sequência de Bases , Miopatias Distais/genética , Miopatias Distais/terapia , Disferlina/genética , Disferlina/metabolismo , Éxons/genética , Edição de Genes , Células HEK293 , Haplótipos/genética , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/terapia , Distrofia Muscular de Duchenne/genética , Mutagênese Insercional/genética , Mutação/genética , Splicing de RNA/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleases/metabolismo
7.
Nat Commun ; 11(1): 1334, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170079

RESUMO

Prolonged expression of the CRISPR-Cas9 nuclease and gRNA from viral vectors may cause off-target mutagenesis and immunogenicity. Thus, a transient delivery system is needed for therapeutic genome editing applications. Here, we develop an extracellular nanovesicle-based ribonucleoprotein delivery system named NanoMEDIC by utilizing two distinct homing mechanisms. Chemical induced dimerization recruits Cas9 protein into extracellular nanovesicles, and then a viral RNA packaging signal and two self-cleaving riboswitches tether and release sgRNA into nanovesicles. We demonstrate efficient genome editing in various hard-to-transfect cell types, including human induced pluripotent stem (iPS) cells, neurons, and myoblasts. NanoMEDIC also achieves over 90% exon skipping efficiencies in skeletal muscle cells derived from Duchenne muscular dystrophy (DMD) patient iPS cells. Finally, single intramuscular injection of NanoMEDIC induces permanent genomic exon skipping in a luciferase reporter mouse and in mdx mice, indicating its utility for in vivo genome editing therapy of DMD and beyond.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Éxons/genética , Vesículas Extracelulares/metabolismo , Nanopartículas/química , RNA Guia de Cinetoplastídeos/metabolismo , Sequência de Bases , Sobrevivência Celular , Dimerização , Edição de Genes , Vetores Genéticos/metabolismo , Células HEK293 , Protease de HIV/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ligantes , Luciferases/metabolismo , Splicing de RNA/genética , RNA Catalítico/metabolismo , Ribonucleoproteínas/metabolismo , Doadores de Tecidos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
8.
Stem Cell Reports ; 14(1): 49-59, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31883921

RESUMO

The ex vivo production of platelets depleted of human leukocyte antigen class I (HLA-I) could serve as a universal measure to overcome platelet transfusion refractoriness caused by HLA-I incompatibility. Here, we developed human induced pluripotent cell-derived HLA-I-deficient platelets (HLA-KO iPLATs) in a clinically applicable imMKCL system by genetic manipulation and assessed their immunogenic properties including natural killer (NK) cells, which reject HLA-I downregulated cells. HLA-KO iPLATs were deficient for all HLA-I but did not elicit a cytotoxic response by NK cells in vitro and showed circulation equal to wild-type iPLATs upon transfusion in our newly established Hu-NK-MSTRG mice reconstituted with human NK cells. Additionally, HLA-KO iPLATs successfully circulated in an alloimmune platelet transfusion refractoriness model of Hu-NK-MISTRG mice. Mechanistically, the lack of NK cell-activating ligands on platelets may be responsible for evading the NK cell response. This study revealed the unique non-immunogenic property of platelets and provides a proof of concept for the clinical application of HLA-KO iPLATs.


Assuntos
Plaquetas/citologia , Plaquetas/metabolismo , Diferenciação Celular , Antígenos de Histocompatibilidade Classe I/imunologia , Células-Tronco Pluripotentes Induzidas/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Técnicas de Inativação de Genes , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Microglobulina beta-2/deficiência , Microglobulina beta-2/genética
9.
Nat Commun ; 10(1): 5302, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811138

RESUMO

Although single-component Class 2 CRISPR systems, such as type II Cas9 or type V Cas12a (Cpf1), are widely used for genome editing in eukaryotic cells, the application of multi-component Class 1 CRISPR has been less developed. Here we demonstrate that type I-E CRISPR mediates distinct DNA cleavage activity in human cells. Notably, Cas3, which possesses helicase and nuclease activity, predominantly triggered several thousand base pair deletions upstream of the 5'-ARG protospacer adjacent motif (PAM), without prominent off-target activity. This Cas3-mediated directional and broad DNA degradation can be used to introduce functional gene knockouts and knock-ins. As an example of potential therapeutic applications, we show Cas3-mediated exon-skipping of the Duchenne muscular dystrophy (DMD) gene in patient-induced pluripotent stem cells (iPSCs). These findings broaden our understanding of the Class 1 CRISPR system, which may serve as a unique genome editing tool in eukaryotic cells distinct from the Class 2 CRISPR system.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Proteínas Associadas a CRISPR/classificação , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Clivagem do DNA , DNA Helicases/metabolismo , Éxons , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas , Distrofia Muscular de Duchenne/genética , Deleção de Sequência
10.
Cell Stem Cell ; 24(4): 566-578.e7, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853558

RESUMO

Induced pluripotent stem cells (iPSCs) have strong potential in regenerative medicine applications; however, immune rejection caused by HLA mismatching is a concern. B2M gene knockout and HLA-homozygous iPSC stocks can address this issue, but the former approach may induce NK cell activity and fail to present antigens, and it is challenging to recruit rare donors for the latter method. Here, we show two genome-editing strategies for making immunocompatible donor iPSCs. First, we generated HLA pseudo-homozygous iPSCs with allele-specific editing of HLA heterozygous iPSCs. Second, we generated HLA-C-retained iPSCs by disrupting both HLA-A and -B alleles to suppress the NK cell response while maintaining antigen presentation. HLA-C-retained iPSCs could evade T cells and NK cells in vitro and in vivo. We estimated that 12 lines of HLA-C-retained iPSCs combined with HLA-class II knockout are immunologically compatible with >90% of the world's population, greatly facilitating iPSC-based regenerative medicine applications.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Antígenos HLA/genética , Histocompatibilidade/imunologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Linhagem Celular , Feminino , Antígenos HLA/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD
11.
Biochem Biophys Res Commun ; 505(4): 1097-1102, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30316514

RESUMO

The delivery of mRNA is advantageous over DNA delivery as it is transient and does not carry the risk of genomic DNA integration. However, there are currently few efficient mRNA delivery options available, especially for hard-to-transfect cell types, and thus new delivery methods are needed. To this end, we have established a novel mRNA delivery system utilizing chimeric virus-like particles (VLPs). We generated a novel VLP by fusing protein G of Vesicular stomatitis virus (VSV-G) with a ribosomal protein L7Ae of Archeoglobus fulgidus. This system allowed the efficient delivery of EGFP mRNA which was independent from the presence of BoxC/D motif in the mRNA sequence. Our VSVG-L7Ae VLP system demonstrated high transduction efficacy in hard-to-transfect cell lines, such as human induced pluripotent stem cells (iPS cells) and monocytes. In summary, this platform may serve as an efficient and transient transgene delivery tool for an mRNA of interest.


Assuntos
Técnicas de Transferência de Genes , Glicoproteínas de Membrana/química , RNA Mensageiro/genética , Proteínas Ribossômicas/química , Proteínas do Envelope Viral/química , Células HEK293 , Humanos
12.
Sci Rep ; 8(1): 310, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321585

RESUMO

Randomized mutagenesis at an endogenous chromosomal locus is a promising approach for protein engineering, functional assessment of regulatory elements, and modeling genetic variations. In mammalian cells, however, it is challenging to perform site-specific single-nucleotide substitution with single-stranded oligodeoxynucleotide (ssODN) donor templates due to insufficient homologous recombination and the infeasibility of positive selection. Here, we developed a DNA transposon based CRISPR-Cas9 regulated transcription and nuclear shuttling (CRONUS) system that enables the stable transduction of CRISPR-Cas9/sgRNA in broad cell types, but avoids undesired genome cleavage in the absence two chemical inducing molecules. Highly efficient single nucleotide alterations induced randomization of desired codons (up to 4 codons) at a defined genomic locus in various human cell lines, including human iPS cells. Thus, CRONUS provides a novel platform for modeling diseases and genetic variations.


Assuntos
Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , Mutagênese Sítio-Dirigida/métodos , Células Cultivadas , Códon/genética , Feminino , Edição de Genes/métodos , Células HEK293 , Humanos , Masculino , RNA Guia de Cinetoplastídeos/genética , Distribuição Aleatória , Transdução Genética/métodos
13.
Stem Cells Int ; 2017: 8765154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607562

RESUMO

In the past decade, the development of two innovative technologies, namely, induced pluripotent stem cells (iPSCs) and the CRISPR Cas9 system, has enabled researchers to model diseases derived from patient cells and precisely edit DNA sequences of interest, respectively. In particular, Duchenne muscular dystrophy (DMD) has been an exemplary monogenic disease model for combining these technologies to demonstrate that genome editing can correct genetic mutations in DMD patient-derived iPSCs. DMD is an X-linked genetic disorder caused by mutations that disrupt the open reading frame of the dystrophin gene, which plays a critical role in stabilizing muscle cells during contraction and relaxation. The CRISPR Cas9 system has been shown to be capable of targeting the dystrophin gene and rescuing its expression in in vitro patient-derived iPSCs and in vivo DMD mouse models. In this review, we highlight recent advances made using the CRISPR Cas9 system to correct genetic mutations and discuss how emerging CRISPR technologies and iPSCs in a combined platform can play a role in bringing a therapy for DMD closer to the clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...