Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
J Lipid Res ; : 100626, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39173829

RESUMO

Atherosclerotic cardiovascular disease (ASCVD) is closely correlated with elevated low-density lipoprotein cholesterol (LDL-C). In feeding state, glucose and insulin activate mTORC1 that phosphorylates the deubiquitylase USP20. USP20 then stabilizes HMG-CoA reductase (HMGCR), thereby increasing lipid biosynthesis. In this study, we applied clinically approved lipid nanoparticles (LNPs) to encapsulate the siRNA targeting Usp20. We demonstrated that silencing of hepatic Usp20 by siRNA decreased body weight, improved insulin sensitivity and increased energy expenditure through elevating UCP1. In Ldlr-/- mice, silencing Usp20 by siRNA decreased lipid levels and prevented atherosclerosis. This study suggests that the RNAi-based therapy targeting hepatic Usp20 has a translational potential to treat metabolic disease.

2.
J Nutr ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147036

RESUMO

BACKGROUND: There is an urgent need to develop an efficient therapeutic strategy for heart failure with preserved ejection fraction (HFpEF), which is mediated by phenotypic changes in cardiac macrophages. We previously reported that vitamin B6 (VB6) inhibits macrophage-mediated inflammasome activation OBJECTIVE: We sought to examine whether the prophylactic use of VB6 prevents HFpEF METHODS: HFpEF model was elicited by a combination of high fat diet and Nω-nitro-l-arginine methyl ester in mice. Cardiac function was assessed using conventional echocardiography and Doppler imaging. Immunohistochemistry and immunoblotting were used to detect changes in the macrophage phenotype and myocardial remodeling-related molecules RESULTS: Co-administration of VB6 with HFpEF mice mitigated HFpEF phenotypes, including diastolic dysfunction, cardiac macrophage phenotypic shifts, fibrosis, and hypertrophy. Echocardiographic improvements were observed, with the E/E' ratio decreasing from 42.0 to 21.6 and the E/A ratio improving from 2.13 to 1.17. The exercise capacity also increased from 295.3 m to 657.7 m. However, these beneficial effects were negated in downstream of kinase 3 (DOK3)-deficient mice. Mechanistically, VB6 increased DOK3 protein levels and inhibited macrophage phenotypic changes, which were abrogated by an AMP-activated protein kinase inhibitor CONCLUSION: VB6 increases DOK3 signaling to lower the risk of HFpEF by inhibiting phenotypic changes in cardiac macrophages.

3.
Biol Trace Elem Res ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177724

RESUMO

High invasiveness mesothelioma is a malignant tumor of the peritoneum or pleura. The effect of cuproptosis on mesothelioma (MESO) is still unknown, though. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) datasets were used to identify differential genes linked to cuproptosis in mesothelioma. Multigene features were then created to assess the course of the disease. Use single-cell data and in vitro validation to uncover crucial gene regulation mechanisms. In MESO, we found nine differentially expressed genes linked to cuproptosis. Using univariate Cox and LASSO regression techniques, a 3-gene feature (P < 0.05) was created, showing a good predictive potential for survival time. According to the risk score, patients in the low-risk subset had a considerably greater survival rate than those in the high-risk subset (P = 0). The similar survival pattern and prediction performance are also seen in the validation queue. The findings of the drug sensitivity research indicate that in high-risk patients, vinblastine, paclitaxel, gefitinib, and erlotinib are sensitive medications (P < 0.05). Classical monocytes were identified as core cells connected to cuproptosis by the CellChat results. SLC31A1 is implicated in the positive regulation of M2 macrophage polarization, according to cell subtype analysis and in vitro confirmation. Genes linked to cuproptosis have a major influence on tumor immunity and can predict how MESO will progress.

5.
Nat Commun ; 15(1): 7139, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164254

RESUMO

The presence of defects at the interface between the perovskite film and the carrier transport layer poses significant challenges to the performance and stability of perovskite solar cells (PSCs). Addressing this issue, we introduce a dual host-guest (DHG) complexation strategy to modulate both the bulk and interfacial properties of FAPbI3-rich PSCs. Through NMR spectroscopy, a synergistic effect of the dual treatment is observed. Additionally, electro-optical characterizations demonstrate that the DHG strategy not only passivates defects but also enhances carrier extraction and transport. Remarkably, employing the DHG strategy yields PSCs with power conversion efficiencies (PCE) of 25.89% (certified at 25.53%). Furthermore, these DHG-modified PSCs exhibit enhanced operational stability, retaining over 96.6% of their initial PCE of 25.55% after 1050 hours of continuous operation under one-sun illumination, which was the highest initial value in the recently reported articles. This work establishes a promising pathway for stabilizing high-efficiency perovskite photovoltaics through supramolecular engineering, marking a significant advancement in the field.

6.
ACS Nano ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150909

RESUMO

Peripheral nerve injury is a major societal concern. Black phosphorus (BP) has inherent advantages over cell-based therapies in regenerative medicine. However, controlling spontaneous degradation and size-dependent cytotoxicity remains challenging and poses difficulties for clinical translation. In this study, we constructed zero-dimensional BP quantum dots (QDs) modified with antioxidant ß-carotene and comprehensively investigated them in Schwann cells (SCs) to elucidate their potential for peripheral nerve repair. In vitro experiments demonstrated that BPQD@ß-carotene has an inappreciable toxicity and good biocompatibility, favoring neural regrowth, angiogenesis, and inflammatory regulation of SCs. Furthermore, the PI3K/Akt and Ras/ERK1/2 signaling pathways were activated in SCs at the genetic, protein, and metabolite levels. The BPQD@ß-carotene-embedded GelMA/PEGDA scaffold enhanced functional recovery by promoting axon remyelination and regeneration and facilitating intraneural angiogenesis in peripheral nerve injury models of rats and beagle dogs. These results contribute to advancing knowledge of BP nanomaterials in tissue regeneration and show significant potential for application in translational medicine.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39158678

RESUMO

BACKGROUND AND OBJECTIVES: Smoothened (SMO), a key component of the hedgehog signaling pathway, represents a therapeutic target for triple negative breast cancer (TNBC), yet the chemotherapy response rate in TNBC patients is only 40-50%, underscoring the urgent need for the development of novel drugs to effectively treat this condition. The novel compound TPB15, an SMO inhibitor derived from [1,2,4] triazolo [4,3-α] pyridines, demonstrated superior anti-TNBC activity and lower toxicity compared to the first SMO inhibitor vismodegib in both in vitro and in vivo. However, the compound's pharmacokinetic properties remain unclear. The present work aims to develop a simple HPLC-MS/MS method to profile the pharmacokinetics and bioavailability of TPB15 in rats as a ground work for further clinical research. METHODS: Separation was performed on an Agilent ZORBAX StableBond C18 column by gradient elution using acetonitrile and 0.1% formic acid as mobile phase at a flow rate of 0.3 mL/min. Multiple reaction monitoring(MRM) in positive mode with the transitions of m/z 454.2 → 100.0, 248.1 → 121.1 was employed to determine TPB15 and internal standard tinidazole, respectively. The specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover of the method was validated. The pharmacokinetics and bioavailability  study of TPB15 were carried out on rats through intravenous injection at the dose of 5 mg/kg and oral gavage at the dose of 25 mg/kg, and the pharmacokinetics parameters were calculated by the non-compartment analysis using the pharmacokinetics software DAS 2.1.1. RESULTS: The values of specificity, intra- and inter- day precision and accuracy, extraction recovery, stability, matrix effect, dilution integrity and carryover satisfied the acceptable limits. The lower limit of quantification of this method was 10 ng/mL with a linear range of 10-2000 ng/mL. The validated method was then applied to pharmacokinetics and bioavailability studies in rat by dosing with gavage (25 mg/kg) and intravenous injection(5 mg/kg), and the oral bioavailability of TBP15 in rat was calculated as 16.4 ± 3.5%. The pharmacokinetic parameters were calculated as following: maximum of plasma concentration (Cmax) (PO: 2787.17 ± 279.45 µg/L), Time to maximum plasma concentration (Tmax) (PO: 4.20 ± 0.90 h), the area under the concentration-time curve 0 to time (AUC0-t) (PO: 17,373.03 ± 2585.18 ng/mL·h, IV: 21,129.79 ± 3360.84 ng/mL·h), the area under the concentration-time curve 0 to infinity (AUC0-∞) (PO: 17,443.85 ± 2597.63 ng/mL·h, IV: 17,443.85 ± 2597.63 ng/mL·h), terminal elimination half-life (t1/2) (PO: 7.26 ± 2.16 h, IV: 4.78 ± 1.09 h). CONCLUSIONS: TPB15, a promising candidate for treating TNBC, has demonstrated outstanding efficacy and safety in vitro and in vivo. This study established a simple, sensitive, and rapid HPLC-MS/MS bioanalytical method, developed and validated in accordance with FDA and EMA guidelines, for conducting pharmacokinetic and bioavailability studies of TPB15. The results revealed a favorable pharmacokinetic profile owing to its long t1/2. Nevertheless, the next phase of research should include formulation screening to enhance bioavailability, as well as clinical trials, metabolism pathway analysis, and assessment of potential drug-drug interactions.

8.
Cell Host Microbe ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106870

RESUMO

Identification of potential bacterial players in colorectal tumorigenesis has been a focus of intense research. Herein, we find that Clostridium symbiosum (C. symbiosum) is selectively enriched in tumor tissues of patients with colorectal cancer (CRC) and associated with higher colorectal adenoma recurrence after endoscopic polypectomy. The tumorigenic effect of C. symbiosum is observed in multiple murine models. Single-cell transcriptome profiling along with functional assays demonstrates that C. symbiosum promotes the proliferation of colonic stem cells and enhances cancer stemness. Mechanistically, C. symbiosum intensifies cellular cholesterol synthesis by producing branched-chain amino acids (BCAAs), which sequentially activates Sonic hedgehog signaling. Low dietary BCAA intake or blockade of cholesterol synthesis by statins could partially abrogate the C. symbiosum-induced cell proliferation in vivo and in vitro. Collectively, we reveal C. symbiosum as a bacterial driver of colorectal tumorigenesis, thus identifying a potential target in CRC prediction, prevention, and treatment.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39115788

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer, characterized by a high morbidity rate. Long non-coding RNAs (lncRNAs) play an important role in regulating various cellular processes and diseases, including cancer. However, their specific roles and mechanisms in HCC are not fully understood. This study used a multi-cohort design to investigate necroptosis-related lncRNAs (NRLs) in patients with HCC. We curated a list of 1095 NRLs and 838 genes showing differential expression between tumor and normal tissues. Among them, we found 105 NRLs closely associated with the prognosis of HCC patients. The 10 lncRNAs (AC100803.3, AC027237.2, AL158166.1, LINC02870, AC026412.3, LINC02159, AC027097.1, AC139887.4, AC007405.1, AL023583.1) generated by LASSO-Cox regression analysis were used to create a prognostic risk model for HCC and group patients into groups based on risk. The KEGG analysis revealed distinct pathway enrichments in high-risk (H-R) and low-risk (L-R) subgroups. According to GO analysis, this study identified 230 differentially expressed genes (DEGs) that were significantly enriched in specific biological processes. Comparison of immune checkpoint-related genes (MCPGs) between H-R and L-R patients revealed significant differences. Moreover, we established a correlation between the risk scores of patients with liver cancer and their sensitivity to 16 chemotherapeutic agents. Employing protein-protein interaction (PPI) analysis, we identified 10 hub genes that potentially regulate the molecular networks involved in HCC development. This study is a pioneering effort to investigate the roles of NRLs in HCC. It opens a new avenue for potential targeted therapies and provides insights into the molecular mechanisms of HCC.

10.
J Anim Sci Biotechnol ; 15(1): 114, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118186

RESUMO

Obesity is a prevalent chronic disease that has significant negative impacts on humans and our companion animals, including dogs and cats. Obesity occurs with multiple comorbidities, such as diabetes, hypertension, heart disease and osteoarthritis in dogs and cats. A direct link between lipid metabolism dysregulation and obesity-associated diseases has been implicated. However, the understanding of such pathophysiology in companion animals is limited. This review aims to address the role of lipid metabolism in various metabolic disorders associated with obesity, emphasizing the involvement of the gut microbiota. Furthermore, we also discuss the management of obesity, including approaches like nutritional interventions, thus providing novel insights into obesity prevention and treatment for canines and felines.

11.
J Vis Exp ; (209)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39141532

RESUMO

Due to the limited accessibility of the human retina, retinal organoids (ROs) are the best model for studying human retinal disease, which could reveal the mechanism of retinal development and the occurrence of retinal disease. Microglia (MG) are unique resident macrophages in the retina and central nervous system (CNS), serving crucial immunity functions. However, retinal organoids lack microglia since their differentiation origin is the yolk sac. The specific pathogenesis of microglia in these retinal diseases remains unclear; therefore, the establishment of a microglia-incorporated retinal organoid model turns out to be necessary. Here, we successfully constructed a co-cultured model of retinal organoids with microglia derived from human stem cells. In this article, we differentiated microglia and then co-cultured to retinal organoids in the early stage. As the incorporation of immune cells, this model provides an optimized platform for retinal disease modeling and drug screening to facilitate in-depth research on the pathogenesis and treatment of retinal and CNS-related diseases.


Assuntos
Técnicas de Cocultura , Microglia , Organoides , Retina , Organoides/citologia , Microglia/citologia , Retina/citologia , Humanos , Técnicas de Cocultura/métodos , Diferenciação Celular/fisiologia
12.
Fitoterapia ; 178: 106159, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127307

RESUMO

Five previously undescribed protopanaxatriol-type saponins, notoginsenosides Ta-Te (1-5), together with eighteen known triterpenoid saponins (6-23) were isolated from the roots of Panax notoginseng. The structures of new compounds were determined by HRESIMS and NMR spectroscopic analyses and chemical methods. Compounds 1 and 2 were the first examples of ginsenosides featuring a 6-deoxy-ß-d-glucose moiety from Panax species. Compounds 1-4, 7, 10, 12, 21-22 showed protective effects on L02 cells against the injury of acetaminophen (APAP). Among them, notoginsenoside R1 (12), ginsenoside Rg1 (21), and ginsenoside Re (22) were the most potent ones, with cell viabilities >80%. Moreover, compounds 12 and 22 remarkably alleviated APAP-induced liver injury in mice. These saponins are potential hepatoprotective agents.

13.
Mil Med Res ; 11(1): 52, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107834

RESUMO

BACKGROUND: In recent years, there has been a growing trend in the utilization of observational studies that make use of routinely collected healthcare data (RCD). These studies rely on algorithms to identify specific health conditions (e.g. diabetes or sepsis) for statistical analyses. However, there has been substantial variation in the algorithm development and validation, leading to frequently suboptimal performance and posing a significant threat to the validity of study findings. Unfortunately, these issues are often overlooked. METHODS: We systematically developed guidance for the development, validation, and evaluation of algorithms designed to identify health status (DEVELOP-RCD). Our initial efforts involved conducting both a narrative review and a systematic review of published studies on the concepts and methodological issues related to algorithm development, validation, and evaluation. Subsequently, we conducted an empirical study on an algorithm for identifying sepsis. Based on these findings, we formulated specific workflow and recommendations for algorithm development, validation, and evaluation within the guidance. Finally, the guidance underwent independent review by a panel of 20 external experts who then convened a consensus meeting to finalize it. RESULTS: A standardized workflow for algorithm development, validation, and evaluation was established. Guided by specific health status considerations, the workflow comprises four integrated steps: assessing an existing algorithm's suitability for the target health status; developing a new algorithm using recommended methods; validating the algorithm using prescribed performance measures; and evaluating the impact of the algorithm on study results. Additionally, 13 good practice recommendations were formulated with detailed explanations. Furthermore, a practical study on sepsis identification was included to demonstrate the application of this guidance. CONCLUSIONS: The establishment of guidance is intended to aid researchers and clinicians in the appropriate and accurate development and application of algorithms for identifying health status from RCD. This guidance has the potential to enhance the credibility of findings from observational studies involving RCD.


Assuntos
Algoritmos , Nível de Saúde , Estudos Observacionais como Assunto , Humanos , Estudos Observacionais como Assunto/métodos , Estudos Observacionais como Assunto/normas , Reprodutibilidade dos Testes , Coleta de Dados/métodos , Coleta de Dados/normas , Coleta de Dados/estatística & dados numéricos
14.
World J Clin Cases ; 12(22): 5151-5158, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39109014

RESUMO

BACKGROUND: The common cause of sodium nitrite poisoning has shifted from previous accidental intoxication by exposure or ingestion of contaminated water and food to recent alarming intentional intoxication as an employed method of suicide/exit. The subsequent formation of methemoglobin (MetHb) restricts oxygen transport and utilization in the body, resulting in functional hypoxia at the tissue level. In clinical practice, a mismatch of cyanotic appearance and oxygen partial pressure usually contributes to the identification of methemoglobinemia. Prompt recognition of characteristic mismatch and accurate diagnosis of sodium nitrite poisoning are prerequisites for the implementation of standardized systemic interventions. CASE SUMMARY: A pregnant woman was admitted to the Department of Critical Care Medicine at the First Affiliated Hospital of Harbin Medical University due to consciousness disorders and drowsiness 2 h before admission. Subsequently, she developed vomiting and cyanotic skin. The woman underwent orotracheal intubation, invasive mechanical ventilation (IMV), and correction of internal environment disturbance in the ICU. Her premature infant was born with a higher-than-normal MetHb level of 3.3%, and received detoxification with methylene blue and vitamin C, supplemental vitamin K1, an infusion of fresh frozen plasma, as well as respiratory support via orotracheal intubation and IMV. On day 3 after admission, the puerpera regained consciousness, evacuated the IMV, and resumed enteral nutrition. She was then transferred to the maternity ward 24 h later. On day 7 after admission, the woman recovered and was discharged without any sequelae. CONCLUSION: MetHb can cross through the placental barrier. Level of MetHb both reflects severity of the sodium nitrite poisoning and serves as feedback on therapeutic effectiveness.

15.
J Colloid Interface Sci ; 677(Pt A): 842-852, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39126802

RESUMO

The high theoretical specific energy and environmental friendliness of zinc-air batteries (ZABs) have garnered significant attention. However, the practical application of ZABs requires overcoming the sluggish kinetics associated with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, 3D self-supported nitrogen-doped carbon nanotubes (N-CNTs) arrays encapsulated by CoNi nanoparticles on carbon fiber cloth (CoNi@N-CNTs/CFC) are synthesized as bifunctional catalysts for OER and ORR. The 3D interconnected N-CNTs arrays not only improve the electrical conductivity, the permeation and gas escape capabilities of the electrode, but also enhance the corrosion resistance of CoNi metals. DFT calculations reveal that the co-existence of Co and Ni synergistically reduces the energy barrier for OOH conversion to OH, thereby optimizing the Gibbs free energy of the catalysts. Additionally, analysis of the change in energy barrier during the rate-determining step suggests that the primary catalytic active center is Ni site for OER. As a result, CoNi@N-CNTs/CFC exhibits superior catalytic activity with an overpotential of 240 mV at 10 mA cm-2 toward OER, and the onset potential of 0.92 V for ORR. Moreover, utilization of CoNi@N-CNTs/CFC in liquid and solid-state ZABs exhibited exceptional stability, manifesting a consistent cycling operation lasting for 100 and 15 h, respectively.

16.
Turk J Gastroenterol ; 35(7): 587-588, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39128110

RESUMO

Cite this article as: Zong Z, Xu J, Zhang H, Xu H, Tang X, Shi L. A small "tent" in the esophagus. Turk J Gastroenterol. 2024;35(7): 587-588.


Assuntos
Esôfago , Humanos , Masculino , Doenças do Esôfago , Feminino
17.
Foods ; 13(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123531

RESUMO

This study focuses on the diversified utilization of the sugarcane industry, and sugarcane syrup, as a by-product of the sugarcane industry, is a good raw material for fermentation. Bringing sugarcane syrup into beer is conducive to the enrichment of the sugar industry, and it can improve the flavor of beer and make it more aromatic. This study determined the optimal fermentation process for beer. By analyzing the consumption rate of the carbon and nitrogen sources of raw materials, the nutrient utilization of yeast, and the causes of differences in flavor substances, the flavor composition and flavor stability of beer were determined by SPME-HS-GC-MS technology. The results showed that beer brewed with sugarcane syrup as an auxiliary raw material met the basic specifications of beer. The addition of sugarcane syrup to the wort base increased the utilization of amino acids by the yeast, and LS (lager with added cane syrup) increased the nine flavor compounds of the beer, which constituted the basic flavor of the beer, bringing new flavor compounds compared with the normal all-barley beer. Forced aging experiments showed that LS produced fewer aging compounds than OWBL. Various experiments have shown that it is feasible to ferment beer with sugarcane syrup instead of partial wort.

18.
J Genet Genomics ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097227

RESUMO

Maintaining chromosome euploidy in zebrafish embryonic cells is challenging because of the degradation of genomic integrity during cell passaging. In this study, we report the derivation of zebrafish cell lines from single blastomeres. These cell lines have a stable chromosome status attributed to BMP4 and exhibit continuous proliferation in vitro. Twenty zebrafish cell lines are successfully established from single blastomeres. Single-cell transcriptome sequencing analysis confirms the fidelity of gene expression profiles throughout long-term culturing of at least 45 passages. The long-term cultured cells are specialized into epithelial cells, exhibiting similar expression patterns validated by integrative transcriptomic analysis. Overall, this work provides a protocol for establishing zebrafish cell lines from single blastomeres, which can serve as valuable tools for in vitro investigations of epithelial cell dynamics in terms of life-death balance and cell fate determination during normal homeostasis.

19.
Biomater Adv ; 164: 213977, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39094444

RESUMO

Biodegradable polymer microspheres in bone tissue engineering have become appealing as their non-invasive advantages in irregular damage bone repair. However, current microspheres used in BTE still lack sufficient osteogenic capacity to induce effective bone regeneration. In this study, we developed osteogenic composite microspheres concurrently loaded with magnesium oxide (MgO) and zinc oxide (ZnO), both of which are osteogenic active substances, using a facile and scalable emulsification method. The osteogenic composite microspheres exhibited a sequential yet complementary release profile characterized by a rapid release of Mg2+ and a gradual release of Zn2+ in a physiological environment, thereby maintaining the concentration of bioactive ions at a sustained high level. As a result, the combination of Mg2+ and Zn2+ in the composite microspheres led to a synergistic enhancement in biomimetic mineralization and the upregulation in the expression of osteogenic-related genes and proteins at the cellular level. Through a critical-sized calvarial rate defect model, the osteogenic composite microspheres were demonstrated to have strong osteogenic ability to promote new bone formation via ultrasonic imaging, histological and immunohistochemical evaluations. In sum, these osteogenic composite microspheres as microcarriers of Mg2+ and Zn2+ have great potential in the delivery of therapeutic ions for treating bone defects.

20.
Precis Clin Med ; 7(2): pbae013, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38946731

RESUMO

Background: Myeloid differentiation factor 88 (MyD88) is the core adaptor for Toll-like receptors defending against microbial invasion and initiating a downstream immune response during microbiota-host interaction. However, the role of MyD88 in the pathogenesis of inflammatory bowel disease is controversial. This study aims to investigate the impact of MyD88 on intestinal inflammation and the underlying mechanism. Methods: MyD88 knockout (MyD88-/-) mice and the MyD88 inhibitor (TJ-M2010-5) were used to investigate the impact of MyD88 on acute dextran sodium sulfate (DSS)-induced colitis. Disease activity index, colon length, histological score, and inflammatory cytokines were examined to evaluate the severity of colitis. RNA transcriptome analysis and 16S rDNA sequencing were used to detect the potential mechanism. Results: In an acute DSS-colitis model, the severity of colitis was not alleviated in MyD88-/- mice and TJ-M2010-5-treated mice, despite significantly lower levels of NF-κB activation being exhibited compared to control mice. Meanwhile, 16S rDNA sequencing and RNA transcriptome analysis revealed a higher abundance of intestinal Proteobacteria and an up-regulation of the nucleotide oligomerization domain-like receptors (NLRs) signaling pathway in colitis mice following MyD88 suppression. Further blockade of the NLRs signaling pathway or elimination of gut microbiota with broad-spectrum antibiotics in DSS-induced colitis mice treated with TJ-M2010-5 ameliorated the disease severity, which was not improved solely by MyD88 inhibition. After treatment with broad-spectrum antibiotics, downregulation of the NLR signaling pathway was observed. Conclusion: Our study suggests that the suppression of MyD88 might be associated with unfavorable changes in the composition of gut microbiota, leading to NLR-mediated immune activation and intestinal inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA