Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 296
Filtrar
1.
Org Biomol Chem ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764306

RESUMO

Herein, a robust catalyst system, composed of a bipyridine-based diphosphine ligand (BiPyPhos) and a cobalt precursor Co(acac)2, is successfully developed and applied in the hydroboration of terminal alkynes, exclusively affording various versatile ß-E-vinylboronates in high yields at room temperature.

2.
Chembiochem ; : e202400285, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752893

RESUMO

ω-Transaminases (ω-TAs) are attractive biocatalysts asymmetrically catalyzing ketones to chiral amines. However, poor non-native catalytic activity and substrate promiscuity severely hamper its wide application in industrial production. Protein engineering efforts have generally focused on reshaping the substrate-binding pockets of ω-TAs. However, hotspots around the substrate tunnel as well as distant sites outside the pockets may also affect its activity. In this study, the ω-TA from Bacillus megaterium (BmeTA) was selected for engineering. The tunnel mutation Y164F synergy with distant mutation A245T which was acquired through a multiple sequence alignment showed improved soluble expression, a 3.7-fold higher specific activity and a 19.9-fold longer half-life at 45℃. Molecule Dynamics simulation explains the mechanism of improved catalytic activity, enhanced thermostability and improved soluble expression of BmeTAY164F/A245T(2M). Finally, the resting cells of 2M were used for biocatalytic processes. 450 mM of S-methoxyisopropylamine (S-MOIPA) was obtained with an ee value of 97.3% and a conversion rate of 90%, laying the foundation for its industrial production. Mutant 2M was also found to be more advantageous in catalyzing the transamination of various ketones. These results demonstrated that sites that are far away from the active center also play an important role in the redesign of ω-TAs.

3.
Org Lett ; 26(18): 4018-4023, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726485

RESUMO

Although extraordinary advances have been achieved by the transition-metal catalysis system, there is an urgent need to explore and develop alternative methodologies that are more environmentally friendly. Herein, we report an electrochemical chlorosulfonylation of alkenes using a wide range of sulfonyl chlorides with an inexpensive, degradable, and commercially available organoboron as a promoter. Furthermore, this protocol employs convergent paired electrolysis, reducing the need for sacrificial anodes and minimizing the extent of hydrogen evolution.

4.
Signal Transduct Target Ther ; 9(1): 109, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38714712

RESUMO

The knee joint has long been considered a closed system. The pathological effects of joint diseases on distant organs have not been investigated. Herein, our clinical data showed that post-traumatic joint damage, combined with joint bleeding (hemarthrosis), exhibits a worse liver function compared with healthy control. With mouse model, hemarthrosis induces both cartilage degeneration and remote liver damage. Next, we found that hemarthrosis induces the upregulation in ratio and differentiation towards Th17 cells of CD4+ T cells in peripheral blood and spleen. Deletion of CD4+ T cells reverses hemarthrosis-induced liver damage. Degeneration of cartilage matrix induced by hemarthrosis upregulates serological type II collagen (COL II), which activates CD4+ T cells. Systemic application of a COL II antibody blocks the activation. Furthermore, bulk RNAseq and single-cell qPCR analysis revealed that the cartilage Akt pathway is inhibited by blood treatment. Intra-articular application of Akt activator blocks the cartilage degeneration and thus protects against the liver impairment in mouse and pig models. Taken together, our study revealed a pathological joint-liver axis mediated by matrikine-activated CD4+ T cells, which refreshes the organ-crosstalk axis and provides a new treatment target for hemarthrosis-related disease. Intra-articular bleeding induces cartilage degradation through down-reulation of cartilage Akt pathway. During this process, the soluble COL II released from the damaged cartilage can activate peripheral CD4+ T cells, differention into Th17 cells and secretion of IL-17, which consequently induces liver impairment. Intra-articular application of sc79 (inhibitor of Akt pathway) can prevent the cartilage damage as well as its peripheral influences.


Assuntos
Linfócitos T CD4-Positivos , Fígado , Animais , Camundongos , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Fígado/patologia , Fígado/metabolismo , Hemartrose/genética , Hemartrose/patologia , Masculino , Modelos Animais de Doenças , Células Th17/imunologia , Células Th17/patologia , Colágeno Tipo II/genética , Venenos Elapídicos/farmacologia , Feminino , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580643

RESUMO

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Camundongos , Animais , Proteínas de Ciclo Celular/metabolismo , DNA , Meiose/genética , Complexo Sinaptonêmico/metabolismo , Recombinação Genética , Recombinação Homóloga
6.
Eur J Drug Metab Pharmacokinet ; 49(3): 295-316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635015

RESUMO

Because of their high specificity, high affinity, and targeting, antibody drugs have been widely used in the treatment of many diseases and have become the most favored new drugs for research in the world. However, some antibody drugs (such as small-molecule antibody fragments) have a short half-life and need to be administered frequently, and are often associated with injection-site reactions and local toxicities during use. Increasing attention has been paid to the development of antibody drugs that are long-acting and have fewer side effects. This paper reviews existing strategies to achieve long-acting antibody drugs, including modification of the drug structure, the application of drug delivery systems, and changing their administration route. Among these, microspheres have been studied extensively regarding their excellent tolerance at the injection site, controllable loading and release of drugs, and good material safety. Subcutaneous injection is favored by most patients because it can be quickly self-administered. Subcutaneous injection of microspheres is expected to become the focus of developing long-lasting antibody drug strategies in the near future.


Assuntos
Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Microesferas , Humanos , Sistemas de Liberação de Medicamentos/métodos , Animais , Injeções Subcutâneas , Anticorpos/administração & dosagem , Meia-Vida , Vias de Administração de Medicamentos , Liberação Controlada de Fármacos
7.
Artigo em Inglês | MEDLINE | ID: mdl-38676635

RESUMO

Exosomes are becoming more widely acknowledged as significant circulating indicators for the prognosis and diagnosis of cancer. Circulating exosomes are essential to the development and spread of cancer, according to a growing body of research. Using existing technology, characterizing exosomes is quite difficult. Therefore, a direct, sensitive, and targeted approach to exosome detection will aid in illness diagnosis and prognosis. The review discusses the new strategies for exosome isolation and detection technologies from microfluidic chips to nanoplasmonic biosensors, analyzing the advantages and limitations of these new technologies. This review serves researchers to better understand exosome isolation and detection methods and to help develop better exosome isolating and detecting devices for clinical applications.

8.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675517

RESUMO

It is imperative to develop an efficient catalyst to reduce the energy barrier of electrochemical water decomposition. In this study, a well-designed electrocatalyst featuring a core-shell structure was synthesized with cobalt sulfides as the core and molybdenum disulfide nanosheets as the shell. The core-shell structure can prevent the agglomeration of MoS2, expose more active sites, and facilitate electrolyte ion diffusion. A CoS2/MoS2 heterostructure is formed between CoS2 and MoS2 through the chemical interaction, and the surface chemistry is adjusted. Due to the morphological merits and the formation of the CoS2/MoS2 heterostructure, CoS2@MoS2 exhibits excellent electrocatalytic performance during the oxygen evolution reaction (OER) process in an alkaline electrolyte. To reach the current density of 10 mA cm-2, only 254 mV of overpotential is required for CoS2@MoS2, which is smaller than that of pristine CoS2 and MoS2. Meanwhile, the small Tafel slope (86.9 mV dec-1) and low charge transfer resistance (47 Ω) imply the fast dynamic mechanism of CoS2@MoS2. As further confirmed by cyclic voltammetry curves for 1000 cycles and the CA test for 10 h, CoS2@MoS2 shows exceptional catalytic stability. This work gives a guideline for constructing the core-shell heterostructure as an efficient catalyst for oxygen evolution reaction.

9.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675625

RESUMO

The rational design of a heterostructure electrocatalyst is an attractive strategy to produce hydrogen energy by electrochemical water splitting. Herein, we have constructed hierarchically structured architectures by immobilizing nickel-cobalt oxide nanowires on/beneath the surface of reduced graphene aerogels (NiCoO2/rGAs) through solvent-thermal and activation treatments. The morphological structure of NiCoO2/rGAs was characterized by microscopic analysis, and the porous structure not only accelerates the electrolyte ion diffusion but also prevents the agglomeration of NiCoO2 nanowires, which is favorable to expose the large surface area and active sites. As further confirmed by the spectroscopic analysis, the tuned surface chemical state can boost the catalytic active sites to show the improved oxygen evolution reaction performance in alkaline electrolytes. Due to the synergistic effect of morphology and composition effect, NiCoO2/rGAs show the overpotential of 258 mV at the current density of 10 mA cm-2. Meanwhile, the small values of the Tafel slope and charge transfer resistance imply that NiCoO2/rGAs own fast kinetic behavior during the OER test. The overlap of CV curves at the initial and 1001st cycles and almost no change in current density after the chronoamperometric (CA) test for 10 h confirm that NiCoO2/rGAs own exceptional catalytic stability in a 1 M KOH electrolyte. This work provides a promising way to fabricate the hierarchically structured nanomaterials as efficient electrocatalysts for hydrogen production.

10.
Langmuir ; 40(17): 9039-9048, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635376

RESUMO

Hollow carbonaceous spheres are extraordinarily attractive for their unique structural features and wide applications in various fields. Herein, a facile and effective synthesis methodology based on the extended Stöber process for construction of phenolic resin hollow spheres has been presented. Combined with a series of characterization techniques, the synthesis process was systematically investigated, and a possible synthesis mechanism was proposed. It is revealed that the structural inhomogeneity of the polymer product achieved by using dodecylamine and alkane is responsible for the formation of hollow architecture, which depends on spontaneous selective dissolution during the synthesis process. Different metal-doped carbonaceous hollow spheres can be obtained by introducing corresponding precursors into the synthetic system and meeting requirements of different application fields. This work presented a novel synthesis strategy of hollow carbonaceous spheres, which is significant for building a new platform of advanced functional carbon-based composites.

11.
Mol Aspects Med ; 96: 101257, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38430667

RESUMO

Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.


Assuntos
Transdução de Sinais , Ubiquitina-Proteína Ligases , Animais , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Diferenciação Celular , Carcinogênese , Mamíferos
12.
Environ Int ; 186: 108574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38507933

RESUMO

The emergence of antibiotic-resistant bacteria poses a huge threat to the treatment of infections. Antimicrobial peptides are a class of short peptides that widely exist in organisms and are considered as potential substitutes for traditional antibiotics. Here, we use metagenomics combined with machine learning to find antimicrobial peptides from environmental metagenomes and successfully obtained 16,044,909 predicted AMPs. We compared the abundance of potential antimicrobial peptides in natural environments and engineered environments, and found that engineered environments also have great potential. Further, we chose sludge as a typical engineered environmental sample, and tried to mine antimicrobial peptides from it. Through metaproteome analysis and correlation analysis, we mined 27 candidate AMPs from sludge. We successfully synthesized 25 peptides by chemical synthesis, and experimentally verified that 21 peptides had antibacterial activity against the 4 strains tested. Our work highlights the potential for mining new antimicrobial peptides from engineered environments and demonstrates the effectiveness of mining antimicrobial peptides from sludge.


Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Metagenoma , Esgotos , Esgotos/microbiologia , Peptídeos Antimicrobianos/farmacologia , Metagenômica , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos
13.
Heliyon ; 10(4): e24348, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434039

RESUMO

Magnesium and its alloys are considered excellent materials for biodegradable implants because of their good biocompatibility and biodegradability as well as their mechanical properties. However, the rapid degradation rate severely limits their clinical applications. Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), is an effective surface modification technique. However, there are many pores and cracks on the coating surface under conventional PEO process. The corrosive products tend to penetrate deeply into the substrate, reducing its corrosion resistance and the biocompatibility, which makes PEO-coated Mg difficult to meet the long-term needs of in vivo implants. Hence, it is necessary to modify the PEO coating. This review discusses the formation mechanism and the influential parameters of PEO coatings on Mg. This is followed by a review of the latest research of the pretreatment and typical amelioration of PEO coating on biodegradable Mg alloys in the past 5 years, including calcium phosphate (Ca-P) coating, layered double hydroxide (LDH)-PEO coating, ZrO2 incorporated-PEO coating, antibacterial ingredients-PEO coating, drug-PEO coating, polymer-PEO composite coating, Plasma electrolytic fluorination (PEF) coating and self-healing coating. Meanwhile, the improvements of morphology, corrosion resistance, wear resistance, biocompatibility, antibacterial abilities, and drug loading abilities and the preparation methods of the modified PEO coatings are deeply discussed as well. Finally, the challenges and prospects of PEO coatings are discussed in detail for the purpose of promoting the clinical application of biodegradable Mg alloys.

14.
Virchows Arch ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383941

RESUMO

Accurate predictions on prognosis and neoadjuvant therapy response are crucial for esophagogastric junction adenocarcinoma (EGJA) patients. Therefore, we aimed to investigate the predictive abilities of several indicators, including tumor stroma ratio (TSR), tumor stroma maturity (TSM), and the density and spatial distribution of tumor-infiltrating immune cells (TIICs), such as T cells, B cells, and tumor-associated macrophages (TAMs). Resection and biopsy specimens of a total of 695 patients were included, obtained from the National Cancer Center (NCC) and The Cancer Genome Atlas (TCGA) cohorts. TSR and TSM were evaluated based on histological assessment. TIICs were quantified by QuPath following immunohistochemical (IHC) staining in resection specimens, while the Klintrup-Mäkinen (KM) grade was employed for evaluating TIIC in biopsy specimens. Patients with high stromal levels or immature stroma had relatively worse prognoses. Furthermore, high CD8+T cell count in the tumor periphery, as well as low CD68+ TAM count either in the tumor center or in the tumor periphery, was an independent favorable prognostic factor. Significantly, the combination model incorporating TSM and CD163+TAMs emerged as an independent prognostic factor in both two independent cohorts (HR 3.644, 95% CI 1.341-9.900, p = 0.011 and HR 1.891, 95% CI 1.195-2.99, p = 0.006, respectively). Additionally, high stromal levels in preoperative biopsies correlated with poor neoadjuvant therapy response (p < 0.05). In conclusion, our findings suggest that TSR, TSM, CD8+T cell, CD68+TAMs, and CD163+TAMs predict the prognosis to some extent in patients with EGJA. Notably, the combined model incorporating TSM and CD163+TAM can contribute significantly to prognostic stratification. Additionally, high stromal levels evaluated in preoperative biopsy specimens correlated with poor neoadjuvant therapy response.

15.
Cancer Cell Int ; 24(1): 54, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311733

RESUMO

BACKGROUND: Ovarian cancer (OC) has the highest mortality rate among all gynecological malignancies. A hypoxic microenvironment is a common feature of solid tumors, including ovarian cancer, and an important driving factor of tumor cell survival and chemo- and radiotherapy resistance. Previous research identified the hypoxia-associated gene angiopoietin-like 4 (ANGPTL4) as both a pro-angiogenic and pro-metastatic factor in tumors. Hence, this work aimed to further elucidate the contribution of ANGPTL4 to OC progression. METHODS: The expression of hypoxia-associated ANGPTL4 in human ovarian cancer was examined by bioinformatics analysis of TCGA and GEO datasets. The CIBERSORT tool was used to analyze the distribution of tumor-infiltrating immune cells in ovarian cancer cases in TCGA. The effect of ANGPTL4 silencing and overexpression on the proliferation and migration of OVCAR3 and A2780 OC cells was studied in vitro, using CCK-8, colony formation, and Transwell assays, and in vivo, through subcutaneous tumorigenesis assays in nude mice. GO enrichment analysis and WGCNA were performed to explore biological processes and genetic networks associated with ANGPTL4. The results obtained were corroborated in OC cells in vitro by western blotting. RESULTS: Screening of hypoxia-associated genes in OC-related TCGA and GEO datasets revealed a significant negative association between ANGPTL4 expression and patient survival. Based on CIBERSORT analysis, differential representation of 14 distinct tumor-infiltrating immune cell types was detected between low- and high-risk patient groups. Silencing of ANGPTL4 inhibited OVCAR3 and A2780 cell proliferation and migration in vitro and reduced the growth rate of xenografted OVCAR3 cells in vivo. Based on results from WGCNA and previous studies, western blot assays in cultured OC cells demonstrated that ANGPTL4 activates the Extracellular signal-related kinases 1 and 2 (ERK1/2) pathway and this results in upregulation of c-Myc, Cyclin D1, and MMP2 expression. Suggesting that the above mechanism mediates the pro-oncogenic actions of ANGPTL4T in OC, the pro-survival effects of ANGPTL4 were largely abolished upon inhibition of ERK1/2 signaling with PD98059. CONCLUSIONS: Our work suggests that the hypoxia-associated gene ANGPTL4 stimulates OC progression through activation of the ERK1/2 pathway. These findings may offer a new prospect for targeted therapies for the treatment of OC.

16.
BMC Immunol ; 25(1): 15, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336646

RESUMO

BACKGROUND AND AIMS: We aimed to investigate the immune characteristics of intestinal CD8+ gamma delta T (CD8+ γδ T) cells in Crohn's disease (CD) and their correlation with disease activity. METHODS: The study cohorts included 21 CD patients and 21 healthy individuals. CD8+ γδ T cells were isolated from human ileal mucosa for detection by flow cytometry. The activation or inhibition status of cells was detected by detecting the expression of activation marker HLA-DR and the immunosuppressive molecule PD-1 on cells. The cytotoxicity of cells was assessed by detecting the expression of cytotoxic molecules (Perforin, Granzyme B, and TRAIL) in cells. Ratios of investigated cells were calculated as prediction factors by receiver operating characteristic curve (ROC) analysis. RESULTS: The study revealed a reduction in intestinal CD8+ γδT cells among active CD patients, with a more pronounced reduction observed in moderately active patients compared to mildly active patients. Moreover, active CD patients exhibited heightened activation levels in their intestinal CD8+ γδT cells, whereas the activation was comparatively weakened in moderately active patients compared with mildly active patients. Additionally, the cytotoxicity of intestinal CD8+ γδT cells was enhanced solely in mildly active patients, while it was impaired in moderately active patients compared with mildly active patients. Furthermore, HLA-DR+ CD8+ γδT cell ratio, CD8+ γδT ratio, and CD8+ γδT count were identified as indicators in the diagnosis of active CD. Meanwhile, the ratios of Granzyme B+ CD8+ γδT cell and Perforin+ CD8+ γδT cell were identified as indicators that distinguish mildly moderately active CD cases. CONCLUSIONS: Intestinal CD8+ γδT was reduced in active CD patients, but their activation and cytotoxicity were enhanced. However, with increased disease activity, intestinal CD8+ γδ T cells became dysfunctional. CD-specific perturbations observed in various phenotypic markers in CD8+ γδ T cells can be used as indicators to assist in diagnosing CD patients.


Assuntos
Doença de Crohn , Linfócitos Intraepiteliais , Humanos , Granzimas , Linfócitos Intraepiteliais/metabolismo , Perforina , Linfócitos T Citotóxicos , Mucosa Intestinal , Antígenos HLA-DR , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo
17.
Adv Mater ; 36(16): e2312616, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190551

RESUMO

Photocatalytic CO2 reduction to high-value chemicals is an attractive approach to mitigate climate change, but it remains a great challenge to produce a specific product selectively by IR light. Hence, UiO-66/Co9S8 composite is designed to couple the advantages of metallic photocatalysts and porous CO2 adsorbers for IR-light-driven CO2-to-CH4 conversion. The metallic nature of Co9S8 endows UiO-66/Co9S8 with exceptional IR light absorption, while UiO-66 dramatically enhances its local CO2 concentration, revealed by finite-element method simulations. As a result, Co9S8 or UiO-66 alone does not show observable IR-light photocatalytic activity, whereas UiO-66/Co9S8 exhibits exceptional activity. The CH4 evolution rate over UiO-66/Co9S8 reaches 25.7 µmol g-1 h-1 with ca.100% selectivity under IR light irradiation, outperforming most reported catalysts under similar reaction conditions. The X-ray absorption fine structure spectroscopy spectra verify the presence of two distinct Co sites and confirm the existence of metallic Co─Co bond in Co9S8. Energy diagrams analysis and transient absorption spectra manifest that CO2 reduction mainly occurs on Co9S8 for UiO-66/Co9S8, while density functional theory calculations demonstrate that high-electron-density Co1 sites are the key active sites, possessing lower energy barriers for further protonation of *CO, leading to the ultra-high selectivity toward CH4.

18.
J Control Release ; 367: 470-485, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290565

RESUMO

Despite the fact that immunotherapy has significantly improved the prognosis of melanoma patients, the non-response rate of monoimmunotherapy is considerably high due to insufficient tumor immunogenicity. Therefore, it is necessary to develop alternative methods of combination therapy with enhanced antitumor efficiency and less systemic toxicity. In this study, we reported a cancer cell membrane-coated zeolitic imidazole framework-8 (ZIF-8) encapsulating pyroptosis-inducer oxaliplatin (OXA) and immunomodulator imiquimod (R837) for chemoimmunotherapy. With the assistance of DNA methyltransferase inhibitor decitabine (DCT), upregulated Gasdermin E (GSDME) was cleaved by OXA-activated caspase-3, further inducing tumor cell pyroptosis, then localized antitumor immunity was enhanced by immune adjuvant R837, followed by triggering systemic antitumor immune responses. These results provided a proof-of-concept for the use of cell membrane-coated biomimetic nanoparticles as a promising drug carrier of combination therapy and a potential insight for pyroptosis-based melanoma chemo-immunotherapy.


Assuntos
Melanoma , Nanopartículas , Neoplasias , Humanos , Melanoma/tratamento farmacológico , Biomimética , Imiquimode , Piroptose , Adjuvantes Imunológicos , Imunoterapia , Oxaliplatina
19.
J Hazard Mater ; 465: 133424, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185088

RESUMO

Heavy metal pollution poses a major threat to human health, and developing a user-deliverable heavy metal detection strategy remains a major challenge. In this work, two-mode Hg2+ sensing platforms based on the tunable cobalt metal-organic framework (Co-MOF) active site strategy are constructed, including a colorimetric, and an electrochemical assay using a personal glucose meter (PGM) as the terminal device. Specifically, thymine (T), a single, adaptable nucleotide, is chosen to replace typical T-rich DNA aptamers. The catalytic sites of Co-MOF are tuned competitively by the specific binding of T-Hg2+-T, and different signal output platforms are developed based on the different enzyme-like activities of Co-MOF. DFT calculations are utilized to analyze the interaction mechanism between T and Co-MOF with defect structure. Notably, the two-mode sensing platforms exhibit outstanding detection performance, with LOD values as low as 0.5 nM (colorimetric) and 3.69 nM (PGM), respectively, superior to recently reported nanozyme-based Hg2+ sensors. In real samples of tap water and lake water, this approach demonstrates an effective recovery rate and outstanding selectivity. Surprisingly, the method is potentially versatile and, by exchanging out T-Hg2+-T, can also detect Ag+. This simple, portable, and user-friendly Hg2+ detection approach shows plenty of promise for application in the future.


Assuntos
Mercúrio , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/química , Domínio Catalítico , Cobalto/química , Água/química , Mercúrio/química , Colorimetria
20.
J Colloid Interface Sci ; 657: 83-90, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38035422

RESUMO

The development of non-precious metal electrocatalysts for oxygen evolution reaction (OER) is crucial for generating large-scale hydrogen through water electrolysis. In this work, bimetal phosphides embedded in electrospun carbon nanofibers (P-FeNi/CNFs) were fabricated through a reliable electrospinning-carbonization-phosphidation strategy. The incorporation of P-FeNi nanoparticles within CNFs prevented them from forming aggregation and further improved their electron transfer property. The bimetal phosphides helped to weaken the adsorption of O intermediate, promoting the OER activity, which was confirmed by the theoretical results. The as-prepared optimized P-Fe1Ni2/CNFs catalyst exhibited very high OER electrocatalytic performance, which required very low overpotentials of just 239 and 303 mV to reach 10 and 1000 mA cm-2, respectively. It is superior to the commercial RuO2 and many other related OER electrocatalysts reported so far. In addition, the constructed alkaline electrolyzer based on the P-Fe1Ni2/CNFs catalyst and Pt/C delivered a cell voltage of 1.52 V at 10 mA cm-2, surpassing the commercial RuO2||Pt/C (1.61 V) electrolyzer. It also offered excellent alkaline OER performance in simulated seawater electrolyte. This demonstrated its potential for practical applications across a broad range of environmental conditions. Our work provides new ideas for the ration design of highly efficient non-precious metal-based OER catalysts for water electrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...