Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 1): 159415, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36243068

RESUMO

Excess fluoride (F-) in groundwater can be hazardous to human health. A total of 360 ground water samples was collected from northern Anhui, China, to study the levels, distribution, and source of F-. And on this basis, predicting the spatial distribution of F- in a wider scale space. The range of F- was 0.1-5.8 mg/L, with a mean value of 1.2 mg/L, and 26.4 % of the samples exceeded the acceptable level of 1.5 mg/L. Moreover, the water-rock interaction (fluorite dissolution) and cation alternate adsorption were considered to be two main driving factors of high F- in groundwater. To further illustrate the spatial effects, the BME-RF model was established by combining the main environmental factors. The spatial distribution of F- was quantitatively predicted, and the response to environmental variables was analyzed. The R2 of BME-RF model reached 0.93, the prediction results showed that the region with 1.0-1.5 mg/L of F- accounts for 47.2 % of the total area. The predicted F- content of nearly 70 % of groundwater in this area has exceeded 1.0 mg/L, which was dominated by Na+ and HCO3- type. The spatial variability of F- in the study area was mainly affected by hydrogeological conditions, and the vertical distribution characteristics were related to the spatial variation of slope, distance from runoff, and hydrochemical types. The results of the study provide new insights into the F- concentration prediction in underground environment, especially in the borehole gap area.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluoretos/análise , Flúor/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Subterrânea/química
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(2): 200-207, 2019 Apr 01.
Artigo em Chinês | MEDLINE | ID: mdl-31168988

RESUMO

OBJECTIVE: This work aimed to study and identify the influence and target gene of microRNA-29a-3p (miR-29a-3p) in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a high-fat environment in vitro and in vivo. METHODS: 1) In vitro: BMSCs were randomly allocated into two groups and were then induced to undergo osteogenic differentiation in a normal or high-fat environment. Next, a miR-29a-3p mimic/inhibitor was transfected into the two groups of cells. The mRNA expression levels of alkaline phosphatase (ALP), Runt related gene 2 (Runx2), and miR-29a-3p and the protein expression levels of ALP and Runx2 were detected before and after transfection through reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot analyses. Moreover, Frizzled (Fzd) 4 was predicted as the target gene of miR-29a-3p by using an online database (Target Scan, MiRNA.org). The interactive relationship between miR-29a-3p and Fzd4 was confirmed through dual-luciferase assays. 2) In vivo: Rats were randomly divided into two groups and fed with a standard or high-fat diet. Titanium implants were grown in rats. Then, the expression levels of miR-29a-3p, ALP, and Runx2 were detected in bone tissues surrounding implants. Moreover, hard tissue sections were subjected to methylene blue-acid magenta staining and observed under microscopy to study bone formation around implants. In addition, miR-29a-3p-overexpressing lentiviral vectors were transfected into rats, and the expression levels of ALP, Runx2, and miR-29a-3p in bone tissues surrounding implants were detected at 3 and 10 days after transfection. RESULTS: The expression levels of ALP, Runx2, and miR-29a-3p and the osteogenic differentiation of BMSCs were suppressed in high-fat groups in vitro and in vivo. CONCLUSIONS: MiR-29a-3p plays a positive role in the regulation of BMSCs in a high-fat environment. It can increase ALP and Runx2 expression levels in bone tissues surrounding implants in hyperlipidemia models. This result implies that miR-29a-3p can promote implant osseointergration in a rat model of hyperlipidemia.


Assuntos
Diferenciação Celular , Implantes Dentários , Hiperlipidemias , MicroRNAs , Osteogênese , Animais , Osseointegração , Osteoblastos , Distribuição Aleatória , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...