Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38560773

RESUMO

Research on new ingredients that can prevent excessive melanin production in the skin while considering efficacy, safety but also environmental impact is of great importance to significantly improve the profile of existing actives on the market and avoid undesirable side effects. Here, the discovery of an innovative technology for the management of hyperpigmentation is described. High-throughput screening tests on a wide chemical diversity of molecules and in silico predictive methodologies were essential to design an original thiopyridinone backbone and select 2-mercaptonicotinoyl glycine (2-MNG) as exhibiting the most favorable balance between the impact on water footprint, skin penetration potential and performance. The effectiveness of 2-MNG was confirmed by topical application on pigmented reconstructed epidermis and human skin explants. In addition, experiments have shown that unlike most melanogenesis inhibitors on the market, this molecule is not a tyrosinase inhibitor. 2-MNG binds to certain melanin precursors, preventing their integration into growing melanin and leading to inhibition of eumelanin and pheomelanin synthesis, without compromising the integrity of melanocytes.

2.
Pest Manag Sci ; 80(6): 2892-2904, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38411441

RESUMO

BACKGROUND: Given the chemical diversity within stink bugs scent glands, they can be convenient models for bioprospecting novel pest control products. Preliminary behaviour observations indicated that adult Mictis fuscipes stink bugs secrete liquid droplets when defending against Solenopsis invicta fire ants, killing them within minutes. Hence, this study aimed to analyse the chemical composition of the metathoracic scent gland secretions of M. fuscipes adults, as well as assess their biological activities against fire ants. RESULTS: Bioassaying fire ants against secretions of several local stink bugs confirmed that the defensive secretions of two Mictis species are significantly more lethal, where M. fuscipes was the most lethal. Volatiles chromatography analysis indicated the secretions of female and male M. fuscipes stink bugs contains 20 and 26 components, respectively, chiefly hexanoic acid and hexyl hexanoate. Five compounds were consistently present in the secretion of female adults: hexyl hexanoate, hexanoic acid, hexyl acetate, hexyl butyrate, and eugenol. These yielded a strong electrophysiological antennal (EAD) response from S. invicta workers, female alates and males, where hexyl acetate showed the strongest response. The combination of these five compounds proved strongly repellent to S. invicta. When tested singly, hexanoic acid, hexyl butyrate, hexyl hexanoate, and eugenol were repellent to S. invicta, but hexyl acetate seemed slightly attractive. Additionally, the same mixture of five components exhibited strong contact and fumigant toxicity towards S. invicta workers, eugenol being the strongest. CONCLUSION: Defensive chemicals of M. fuscipes exhibit robust biological activity against S. invicta and could inspire the development of biopesticides. © 2024 Society of Chemical Industry.


Assuntos
Formigas , Glândulas Odoríferas , Animais , Feminino , Masculino , Formigas/efeitos dos fármacos , Glândulas Odoríferas/química , Heterópteros/efeitos dos fármacos , Heterópteros/fisiologia , Hemípteros/efeitos dos fármacos , Hemípteros/fisiologia , Formigas Lava-Pés
3.
Thromb J ; 22(1): 9, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216919

RESUMO

Oxidative stress is an imbalance between the body's reactive oxygen species and antioxidant defense mechanisms. Oxidative stress is involved in the development of several cardiovascular diseases, such as pulmonary hypertension, atherosclerosis, and diabetes mellitus. A growing number of studies have suggested the potential role of oxidative stress in the pathogenesis of pulmonary embolism. Biomarkers of oxidative stress in pulmonary embolism have also been explored, such as matrix metalloproteinases, asymmetric dimethylarginine, and neutrophil/lymphocyte ratio. Here, we comprehensively summarize some oxidative stress mechanisms and biomarkers in the development of acute pulmonary embolism and summarize related treatments based on antioxidant stress to explore effective treatment strategies for acute pulmonary embolism.

4.
J Fungi (Basel) ; 9(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37888267

RESUMO

Metarhizium anisopliae, an entomopathogenic fungus, has been widely used for the control of agricultural and forestry pests. However, sporulation degeneration occurs frequently during the process of successive culture, and we currently lack a clear understanding of the underlying mechanisms. In this study, the metabolic profiles of M. anisopliae were comparatively analyzed based on the metabolomics approach of gas chromatography-mass spectrometry (GC-MS). A total of 74 metabolites were detected in both normal and degenerate strains, with 40 differential metabolites contributing significantly to the model. Principal component analysis (PCA) and potential structure discriminant analysis (PLS-DA) showed a clear distinction between the sporulation of normal strains and degenerate strains. Specifically, 23 metabolites were down-regulated and 17 metabolites were up-regulated in degenerate strains compared to normal strains. The KEGG enrichment analysis identified 47 significant pathways. Among them, the alanine, aspartate and glutamate metabolic pathways and the glycine, serine and threonine metabolism had the most significant effects on sporulation, which revealed that significant changes occur in the metabolic phenotypes of strains during sporulation and degeneration processes. Furthermore, our subsequent experiments have substantiated that the addition of amino acids could improve M. anisopliae's spore production. Our study shows that metabolites, especially amino acids, which are significantly up-regulated or down-regulated during the sporulation and degeneration of M. anisopliae, may be involved in the sporulation process of M. anisopliae, and amino acid metabolism (especially glutamate, aspartate, serine, glycine, arginine and leucine) may be an important part of the sporulation mechanism of M. anisopliae. This study provides a foundation and technical support for rejuvenation and production improvement strategies for M. anisopliae.

5.
J Insect Sci ; 23(2)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36916278

RESUMO

Fusarium concentricum Nirenberg & O' Donnell (Ascomycota: Hypocreales) is a fungal species known to infect plants, but never reported as entomopathogenic. Polychrosis cunninhamiacola Liu et Pei (Lepidoptera: Tortricidae: Olethreutinae) is a major and widespread insect pest causing economic losses to cultivated Chinese fir Cunninghamia lanceolata (Lamb.) Hook. It is routinely controlled by extensive use of chemical insecticides, which is perceived as environmentally unsustainable. During March and April of 2019-2020, muscardine cadavers of larvae and pupae of P. cunninhamiacola infected with growing fungus were collected in a fir forest in northern Guangdong Province, China. Conidia were isolated and cultured on PDA medium, from which the fungal strain was identified as F. concentricum FCPC-L01 by morphology and by sequence alignment match with Tef-1α gene. Pathogenicity bioassays at the conidial concentration 1 × 107 revealed P. cunninhamiacola adults and Danaus chrysippus (L.) (Lepidoptera: Nymphalidae) larvae are sensitive to the fungal infection, but not the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). We believe results indicate this fungal strain might be applicable against specific target insect pests. As this is the first record of a natural infection caused by F. concentricum in insects, we propose host specificity tests should be done to evaluate its potential as a biocontrol agent.


Assuntos
Formigas , Fusarium , Hypocreales , Mariposas , Animais , Controle Biológico de Vetores/métodos , Insetos , Larva , Esporos Fúngicos
6.
Langmuir ; 39(11): 4170-4178, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36884308

RESUMO

Many fields would greatly benefit from the realization of the manipulation of droplet impact behavior by an asymmetric surface structure, such as self-cleaning, anti-icing, inkjet printing, etc. However, research on the prediction of the impact of the dynamics of small-volume droplets on the asymmetric superhydrophobic surface has been insufficient. In this study, a superhydrophobic curved micropillar array surface with controllable bending angles induced by a magnetic field was prepared. The impact and rebound behaviors of the nanoliter droplets with diameters of 100-300 µm were investigated. The experimental results showed the positive correlation between the threshold Weber number of the impact morphology transition of the droplet and the inclination angle of the micropillar. In addition, the restitution coefficient, which measures the degree of energy loss during the impact process, showed a nonmonotonic dependence on the Weber number. A critical velocity model of the impact morphology transition of the droplet on the curved micropillar array surface and a prediction model of the restitution coefficient of the droplet in different impact morphologies are suggested. Our findings will help in the design of a functional surface for manipulating the impact behavior of the droplet.

7.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142192

RESUMO

Intercropping with guava (Psidium guajava L.) can assist with the management of Asian citrus psyllid (ACP, Diaphorina citri Kuwayama), the insect vector of the huanglongbing pathogen, in citrus orchards. Sulfur volatiles have a repellent activity and physiological effects, as well as being important components of guava volatiles. In this study, we tested whether the sulfur volatiles emitted by guava plants play a role in plant-plant communications and trigger anti-herbivore activities against ACP in sweet orange plants (Citrus sinensis L. Osbeck). Real-time determination using a proton-transfer-reaction mass spectrometer (PTR-MS) showed that guava plants continuously release methanethiol, dimethyl sulfide (DMS), and dimethyl disulfide (DMDS), and the contents increased rapidly after mechanical damage. The exposure of orange plants to DMDS resulted in the suppression of the developmental performance of ACP. The differential elevation of salicylic acid (SA) levels; the expression of phenylalanine ammonia lyase (PAL), salicylate-O-methyl transferase (SMT), and pathogenesis-related (PR1) genes; the activities of defense-related enzymes PAL, polyphenol oxidase (PPO), and peroxidase (POD); and the total polyphenol content were observed in DMDS-exposed orange plants. The emission of volatiles including myrcene, nonanal, decanal, and methyl salicylate (MeSA) was increased. In addition, phenylpropanoid and flavonoid biosynthesis, and aromatic amino acid (such as phenylalanine, tyrosine, and tryptophan) metabolic pathways were induced. Altogether, our results indicated that DMDS from guava plants can activate defense responses in eavesdropping orange plants and boost their herbivore resistance to ACP, which suggests the possibility of using DMDS as a novel approach for the management of ACP in citrus orchards.


Assuntos
Citrus sinensis , Citrus , Hemípteros , Psidium , Animais , Catecol Oxidase/metabolismo , Citrus/metabolismo , Citrus sinensis/genética , Dissulfetos , Hemípteros/fisiologia , Peroxidases/metabolismo , Fenilalanina/farmacologia , Fenilalanina Amônia-Liase/metabolismo , Doenças das Plantas/genética , Polifenóis/farmacologia , Prótons , Psidium/química , Ácido Salicílico/metabolismo , Enxofre/metabolismo , Transferases/metabolismo , Triptofano/metabolismo , Tirosina/metabolismo
8.
Environ Entomol ; 50(1): 160-166, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33381806

RESUMO

Seven entomopathogenic fungi strains (M1-7) were isolated from field-obtained dead coconut hispine beetles Brontispa longissima (Gestro), identified to species, and bioassayed for their pathogenicity. According to ITS sequences, all isolates belong in the genus Metarhizium, mainly M. flavoviride and M. anisopliae. Measured median lethal times (LT50) of 1×107 conidia/ml of M1-7 against fourth-instar B. longissima larvae within 15 d following exposure were, respectively: 5.43, 10.64, 11.26, 10.93, 6.62, 4.73, and 5.95 d. The isolate M6 yielded the highest mortality to fourth-instar larvae, and was thus selected to be tested against other larval instars and adults of B. longissima, after Time-Dose-Mortality (TDM) models. M6 proved more pathogenic against larvae than adults. The obtained bioassays data produced a good fit to the TDM models, yielding estimated LC50 and LT50 for each of the tested developmental stages of B. longissima. Both the obtained dose (ß) and time effect (ri) parameters from TDM models suggest that first-instar larvae are the most susceptible life stage of the pest insect, while adults are more resistant to M6 infection. Calculated LC50 values were, respectively, 1.23×103 and 1.15×106 conidia/ml for first-instar larvae and adults, on the 15th day following M6 inoculation. Estimated LT50 were 3.3 and 5.9 d for first-instar larvae and adults, respectively, at 1×108 conidia/ml. Taken together, these results would suggest Metarhizium M6 as an option for the biological control of B. longissima in the field.


Assuntos
Besouros , Metarhizium , Animais , Larva , Controle Biológico de Vetores
10.
Org Lett ; 21(8): 2684-2687, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30916969

RESUMO

An efficient, divergent, and straightforward access to novel C-glycosides has been developed, namely, α-hydroxy carboxamide and carboxylic acid derivatives, via a green and scalable process from unprotected carbohydrates. The method involves condensation of 1,3-dimethylbarbituric acid with unprotected sugars followed by subsequent barbiturate oxidative cleavage in the same pot. Further expanding of the chemistry led to the development of efficient entries to diastereoisomerically pure C-glycosyl-α-hydroxy esters or amides through nucleophilic attack on a readily available and versatile key lactone intermediate.

11.
Environ Sci Pollut Res Int ; 22(24): 19596-606, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26272291

RESUMO

The response and detoxification mechanisms of three freshwater phytoplankton species (the cyanobacterium Aphanizomenon flos-aquae, the green alga Pediastrum simplex, and the diatom Synedra acus) to cadmium (Cd) were investigated. The cell growth of each species was measured over 10 days, and chlorophyll a fluorescence, Cd bioaccumulation (including surface-adsorbed and intracellular Cd), and phytochelatin (PC) synthesis were determined after 96-h exposures. The growth of the three phytoplankton species was significantly inhibited when Cd concentrations were ≥5 mg L(-1). Compared with P. simplex, greater growth inhibition in S. acus and A. flos-aquae occurred. The changes in chlorophyll fluorescence parameters including the maximal quantum yield of PSII (Fv/Fm) and relative variable fluorescence of the J point (Vj) demonstrated that the increase in Cd concentration damaged PSII in all three species. After 96-h exposures, the accumulation of surface-adsorbed Cd and intracellular Cd increased significantly in all three species, with the increase of Cd concentrations in the media; total cadmium accumulation was 245, 658, and 1670 times greater than that of the control in A. flos-aquae, P. simplex, and S. acus, respectively, after exposure to 10 mg L(-1). Total thiols exhibited a similar trend to that of Cd accumulation. PC3 was found in A. flos-aquae and P. simplex in all Cd treatments. Glutathione (GSH) and PC2 were also produced in response to exposure to high concentrations of Cd. PC4 was only discovered at exposure concentrations of 10 mg L(-1) Cd and only in S. acus. The intracellular Cd/PCs ratio increased in all three phytoplankton with an increase in Cd concentrations, and a linear relationship between the ratio and the growth inhibition rates was observed with P. simplex and S. acus. Our results have demonstrated that metal detoxification mechanisms were dependent on the species. This study suggested that the variance of metal detoxification strategies, such as cadmium accumulation and PCs, might be an explanation why algal species have different sensitivity to Cd at various levels.


Assuntos
Aphanizomenon/química , Cádmio/análise , Clorófitas/química , Diatomáceas/química , Água Doce/química , Fitoplâncton/química , Poluentes Químicos da Água/análise , Aphanizomenon/efeitos dos fármacos , Aphanizomenon/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Clorofila/metabolismo , Clorofila A , Clorófitas/efeitos dos fármacos , Clorófitas/metabolismo , Cromatografia Líquida de Alta Pressão , Diatomáceas/efeitos dos fármacos , Diatomáceas/metabolismo , Fluorescência , Glutationa/metabolismo , Inativação Metabólica , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/metabolismo , Especificidade da Espécie , Compostos de Sulfidrila/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
12.
Ecotoxicology ; 24(2): 468-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25471354

RESUMO

In this study, the effects of cadmium on the cyanobacterium Aphanizomenon flos-aquae, the green alga Pediastrum simplex and the diatom Synedra acus was evaluated on the basis of growth rate, chlorophyll a fluorescence, lipid peroxidation and antioxidant enzyme activity. The EC50 values (effective concentration inducing 50 % of growth inhibition) of cadmium in A. flos-aquae, P. simplex and S. acus were 1.18 ± 0.044, 4.32 ± 0.068 and 3.7 ± 0.055 mg/L, respectively. The results suggested that cadmium stress decreases growth rate and chlorophyll a concentration. The normalized chlorophyll a fluorescence transients significantly increased at cadmium concentrations of 5.0, 10.0 and 20.0 mg/L, but slightly decreased at concentrations of 0.2, 0.5 and 1.0 mg/L. The chlorophyll fluorescence parameters showed considerable variation among the three species, while lipid peroxidation and antioxidant enzyme activities showed a significant increase. Our results demonstrated that blockage of electron transport on the acceptor side of photosystem II is the mechanism responsible for cadmium toxicity in freshwater microalgae, and that the tolerance of the three species to cadmium was in the order green alga P. simplex > diatom S. acus > cyanobacterium A. flos-aquae.


Assuntos
Aphanizomenon/efeitos dos fármacos , Cádmio/toxicidade , Clorófitas/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Antioxidantes/metabolismo , Aphanizomenon/enzimologia , Aphanizomenon/crescimento & desenvolvimento , Aphanizomenon/metabolismo , Clorofila/química , Clorofila A , Clorófitas/enzimologia , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Diatomáceas/enzimologia , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/metabolismo , Fluorescência , Peroxidação de Lipídeos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...