Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 18(24): e202300845, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37885350

RESUMO

The intrinsic lack of processability in the conventional nano/microcrystalline powder form of metal-organic frameworks (MOFs) greatly limits their application in various fields. Synthesis of MOFs with certain flowability make them promising for multitudinous applications. The direct synthesis strategy represents one of the simplest and efficient method for synthesizing solution processable MOF sols/suspensions, compared with other approaches, for instance, the post-synthesis surface modification, the direct dispersion of MOFs in hindered ionic liquids, as well as the calcination method toward a few MOFs with melting behavior. This article reviews the recent direct synthesis strategies of solution processable MOF sols and their typical applications in different fields. The direct synthesis strategies of MOF sols can be classified into two categories: particle size reduction strategy, and selective coordination strategy. The synthesis mechanism of different strategies and the factors affecting the formation of sols are summarized. The application of solution processable MOF sols in different fields are introduced, showing great application potentials. Furthermore, the challenges faced by the direct synthesis of MOF sols and the main methods to deal with the challenges are emphasized, and the future development trend is prospected.

2.
Sci Total Environ ; 872: 162133, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36773918

RESUMO

This paper investigates the impact of in-situ release and sequestration of CO2 on the compressive strength, volume of permeable voids, phase change, hydration reaction, and micro-morphology of cement mortars. Two Linde Type A (LTA) zeolites with micro-pore dimensions of 5 Å and 4 Å (i.e., LTA 5A and 4A zeolites) were employed as CO2 carriers herein. The incorporation of 312 wt% plain LTA 5A and 4A zeolites increases the 1-day compressive strength of the mortars. However, the use of plain LTA 5A zeolite shows marginal contributions to the 7 and 28-day compressive strengths of the mortars, whilst using plain LTA 4A zeolite even deteriorates their 7 and 28-day compressive strengths. The micro-structural analyses reveal that the addition of LTA zeolites promotes the cement hydration and improves the mean chain length (MCL) of calcium aluminosilicate hydrates (C-A-S-H). Nevertheless, this introduces numerous weak points or even a porous structure to the cement matrix. In contrast, in-situ release of CO2 via LTA zeolites significantly enhances the compressive strengths of the mortars at various ages, as this can further facilitate the hydration evolution and improve the MCL of C-A-S-H. Moreover, in-situ release of CO2 brings an incremental content of calcium carbonates. The calcium carbonate contents in the specimens containing 12 wt% LTA 5A and 4A zeolites are increased by 5.3 wt% and 4.8 wt%, respectively. This leads to homogenous distributions of calcite with a grain size of 150600 nm. Thus, LTA 5A zeolite outperforms LTA 4A zeolite with regard to CO2 uptake and the corresponding mechanical properties. This work presents in initial exploration into the application of porous pozzolanic materials in conjunction of CO2 in cement-based materials.

3.
Materials (Basel) ; 15(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363410

RESUMO

In this work, the as-cast directionally solidified (DS) Fe-B alloys with various Si contents and different boride orientation were designed and fabricated, and the as-cast microstructures and static oxidation behaviors of the DS Fe-B alloys were investigated extensively. The as-cast microstructure of the DS Fe-B alloys consists of the well-oriented Fe2B columnar grains and α-Fe, which are strongly refined by Si addition. The oxidation interface of the scales in the DS Fe-B alloy with 3.50 wt.% Si demonstrates an obvious saw-tooth shaped structure and is embedded into the alternating distributed columnar layer structures of the DS Fe-B alloy with oriented Fe2B and α-Fe matrix, which is beneficial to improve the anti-peeling performance of the oxide film compared with lower amounts of Si addition in DS Fe-B alloys with oriented Fe2B [002] orientation parallel to the oxidation direction (i.e., oxidation diffusion direction, labeled as Fe2B// sample). In the DS Fe-B alloys with oriented Fe2B [002] orientation vertical to the oxidation direction (i.e., labeled as Fe2B⟂ sample), due to the blocking and barrier effect of laminated-structure boride, Si is mainly enriched in the lower part of the oxide film to form a dense SiO2 thin layer adhered to layered boride. As a result, the internal SiO2 thin layer plays an obstructed and shielded role in oxidation of the substrate, which hinders the further internal diffusion of oxygen ions and improves the anti-oxidation performance of the Fe2B⟂ sample, making the average anti-oxidation performance better than that of the Fe2B// sample.

4.
Front Psychol ; 13: 1016519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211880

RESUMO

In recent years, there has been increasing use of extended reality (XR) in language learning. Many scholars have conducted empirical research on the relationship between the two, but conclusions have been inconsistent, which calls for an organization and reanalysis of relevant literature. Articles published between 2000 and 2022 on the impact of XR on language learning were retrieved from the Web of Science and Scopus databases, and 17 of them (including 21 independent samples and 993 subjects) were included in this meta-analysis. The findings indicate that XR could promote language learning (effect size = 0.825). The moderating effects of education level, target language, and technology type were also tested, and the results indicate that the target language type significantly moderated the effect of XR technology on language learning (Q = 30.563, p < 0.001). Moreover, based on the subgroup analysis, several research questions worthy of further exploration in this field are discussed. Some suggestions are provided, noting that these technologies should be personally designed for learners and learning objects when applied in order to improve the effects of language learning.

5.
Materials (Basel) ; 15(17)2022 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-36079318

RESUMO

In order to investigate the effect of Si content on the microstructures and properties of directionally solidified (DS) Fe-B alloy, a scanning electron microscope (SEM) with an energy dispersive spectrum (EDS), and X-ray diffraction have been employed to investigate the as-cast microstructures of DS Fe-B alloy. The results show that Si can strongly refine the columnar microstructures of the DS Fe-B alloy, and the columnar grain thickness of the oriented Fe2B is reduced with the increase of Si addition. In addition, Si is mainly distributed in the ferrite matrix, almost does not dissolve in boride, and seems to segregate in the center of the columnar ferrite to cause a strong solid solution strengthening and refinement effect on the matrix, thus raising the microhardness of the matrix and bulk hardness of the DS Fe-B alloy.

6.
Materials (Basel) ; 15(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35329437

RESUMO

The microstructure and mechanical properties of pure W, sintered and swaged W-1.5ZrO2 composites after 1.5 × 1015 Au+/cm2 radiation at room temperature were characterized to investigate the impact of the ZrO2 phase on the irradiation resistance mechanism of tungsten materials. It can be concluded that the ZrO2 phase near the surface consists of two irradiation damage layers, including an amorphous layer and polycrystallization regions after radiation. With the addition of the ZrO2 phase, the total density and average size of dislocation loops, obviously, decrease, attributed to the reason that many more glissile 1/2<111> loops migrate to annihilate preferentially at precipitate interfaces with a higher sink strength of 7.8 × 1014 m−2. The swaged W-1.5ZrO2 alloys have a high enough density of precipitate interfaces and grain boundaries to absorb large numbers of irradiated dislocations. This leads to the smallest irradiation hardening change in hardness of 4.52 Gpa, which is far superior to pure W materials. This work has a collection of experiments and conclusions that are of crucial importance to the materials and nuclear communities.

7.
Materials (Basel) ; 15(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35057275

RESUMO

Binary chromium carbides display excellent wear resistance, extreme stiffness and oxidation resistance under high temperature. The influence of applied pressure on electronic structure, elastic behavior, Debye temperature and hardness of Cr7C3, Cr3C2 and Cr23C6 have been investigated by the density functional theory (DFT) method. The results reveal that lattice parameters and formation enthalpy display an inverse relationship with applied pressure, and Cr3C2 exhibited optimal structural stability. Moreover, Cr-C orbital hybridization tends to be stronger due to the decreased partial density of states (PDOS) of the Cr atom. The difference in electronic distribution of binary carbides has also been investigated, which confirmed that overall orbital hybridization and covalent characteristics has been enhanced. The theoretical hardness was elevated according to the higher bond strength and bond density. In accordance with structural stability data, Cr3C2 has shown maximum theoretical hardness. Furthermore, the anisotropic nature of hardness has been evaluated with external pressure. Cr3C2, and the highest isotropic hardness behavior along with an increase in hardness values with increasing pressure has been observed. In addition, the variation in Debye temperatures of binary chromium carbides under applied pressure has also been predicted. The results provide a theoretical insight into electronic, mechanical and thermodynamic behavior of three binary chromium carbides and show the potential of these novel carbides in a wide range of applications.

8.
Materials (Basel) ; 15(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35057279

RESUMO

In order to investigate the effect of Cr content on the microstructures and oxidation wear properties of high-boron high-speed steel (HBHSS), so as to explore oxidation wear resistant materials (e.g., hot rollers), a scanning electron microscope, an X-ray diffractometer, an electron probe X-ray microanalysis and an oxidation wear test at elevated temperatures were employed to investigate worn surfaces and worn layers. The results showed that the addition of Cr resulted in the transformation of martensite into ferrite and pearlite, while the size of the grid morphology of borides in HBHSSs was refined. After oxidation wear, oxide scales were formed and the high-temperature oxidation wear resistance of HBHSSs was gradually improved with increased additions of Cr. Meanwhile, an interaction between temperature and load in HBHSSs during oxidation wear occurred, and the temperature had more influence on the oxidation wear properties of HBHSSs. SEM observations indicated that a uniform and compact oxide film of HBHSSs in the worn surface at elevated temperatures was generated on the worn surface, and the addition of Cr also reduced the thickness of oxides and inhibited the spallation of worn layers, which was attributed to improvements in microhardness and oxidation resistance of the matrix in HBHSSs. A synergistic effect of temperature and load in HBHSSs with various Cr additions may dominate the oxidation wear process and the formation and spallation of oxide films.

9.
Materials (Basel) ; 15(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009431

RESUMO

The development of wear-resistant materials with excellent properties is of great research value in the manufacturing industry. In this paper, a new kind of low-vanadium wear-resistant alloy was designed and characterized to unveil the influence of vanadium content coupling with heat treatment on the microstructure, hardness, and abrasive wear property. The performances of commercial high chromium cast iron (HCCI) and the new low-vanadium wear-resistant alloy are compared. The alloy with 3 wt.% vanadium quenched at 900 °C and tempered at 250 °C, possessing VC, Mo2C, and M7C3 distributed in the martensite matrix, displayed a wear resistance two times better than the HCCI. The results showed that the increase of vanadium content from 0.98 wt.% to 3.00 wt.% resulted in a decrease in the size of M7C3 and a more homogeneous distribution of M7C3. VC with a bimodal distribution is effective for impeding grooving or indenting by abrasives because of their high hardness, which plays a vital role in improving the wear resistance of low-vanadium wear-resistant alloy.

10.
Chemistry ; 26(9): 2034-2040, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31696569

RESUMO

A new hatted 1T/2H-phase MoS2 on Ni3 S2 nanorods, as a bifunctional electrocatalyst for overall water splitting in alkaline media, is prepared through a simple one-pot hydrothermal synthesis. The hat-rod structure is composed mainly of Ni3 S2 , with 1T/2H-MoS2 adhered to the top of the growth. Aqueous ammonia plays an important role in forming the 1T-phase MoS2 by twisting the 2H-phase transition and expanding the interlayer spacing through the intercalation of NH3 /NH4 + . Owing to the special "hat-like" structure, the electrons conduct easily from Ni foam along Ni3 S2 to MoS2 , and the catalyst particles maintain sufficient contact with the electrolyte, with gaseous molecules produced by water splitting easily removed from the surface of the catalyst. Thus, the electrocatalytic performance is enhanced, with an overpotential of 73 mV, a Tafel slope of 79 mV dec-1 , and excellent stability, and the OER demonstrates an overpotential of 190 mV and Tafel slope of 166 mV dec-1 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...