Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068367

RESUMO

Polytetrafluoroethylene emulsion was ultrasonically mixed with an extremely spinnable poly(acrylic acid-co-hydroxyethyl methacrylate) solution to get a dispersion with good spinnability, and the obtained dispersion was then wet-spun into water-swellable fiber. Crosslinking agents and iron species were simultaneously introduced into the water-swellable fiber through simple impregnation and water swelling. A composite fiber with Fenton reaction-catalyzing function was then fabricated by sequentially conducting crosslinking and sintering treatment. Due to crosslinking-induced good resistance to water swelling and PTFE component-induced hydrophobicity, the composite fiber showed a highly stable activity to catalyze H2O2 to oxidatively decolorize methylene blue (MB). Within nine cycles, the composite fiber could decolorize more than 90% of MB within one minute in the presence of H2O2 and did not show any attenuation in MB decolorization efficiency. The composite fiber still could reduce the total organic carbon of MB aqueous solution from 18.3 to 10.3 mg/L when used for the ninth time. Therefore, it is believable that the prepared fiber has good and broad application prospects in the field of dye wastewater treatment.

2.
Environ Sci Pollut Res Int ; 27(22): 28209-28221, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32415450

RESUMO

Polymer fiber, a kind of versatile material, has been widely used in many fields. However, emerging applications still urge us to develop some new kinds of fibers. Advanced oxidation processes (AOPs) have created a promising prospect for organic wastewater decontamination; thus, it is of important significance to design a kind of special fiber that can be applied in AOPs. In this work, a viable route is proposed to fabricate manganese oxide-supporting melt-spun modified poly (styrene-co-butyl acrylate) fiber, and the prepared fiber has an excellent activity to catalyze H2O2 and O3 to decolorize dye-containing water. The results show that the decolorization of a cationic blue solution can be completely accomplished within 10 min with the prepared fiber as a catalyst, and its decolorization efficiency can reach up to 96.2% within 40 min. The concentration of total organic carbon can decrease from 20.3 to 12.3 mg/L. The prepared fiber can be reused five times without any loss in decolorization efficiency. Compared with other manganese oxide-based catalysts reported in the literature, the prepared fiber also shows many advantages in decolorizing methylene blue such as easy separation, mild reaction condition, and high decolorization efficiency. Therefore, we are confident that the fiber introduced in this study will exhibit a great application potential in the field of dye wastewater treatment.


Assuntos
Corantes , Descoloração da Água , Acrilatos , Peróxido de Hidrogênio , Compostos de Manganês , Óxidos , Estireno
3.
Springerplus ; 5(1): 1383, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27610302

RESUMO

Electrospun polystyrene materials have been employed as oil absorbents, but they have visible drawbacks such as poor strength at low temperature and unreliable integrity because of brittleness and insufficient cohesive force among fibers. Butyl acrylate can polymerize into flexible chains, and its polymer can be used as elastomer and adhesive material. Thereby it is possible to obtain the material that has better performance in comparison with electrospun polystyrene material through the electrospinning of the copolymer of styrene and butyl acrylate. In this work, a polymer was synthesized through suspension polymerization by using styrene and butyl acrylate as comonomers. The synthesis of the copolymer of styrene and butyl acrylate was verified through dissolution and hydrolysis experimental data; as well through nuclear magnetic resonance spectrometry. The viscous flow activation energy of the solution consisting of copolymer and N, N-dimethylformamide was determined via viscosity method and then adopted to establish the entanglement characteristics of butyl acrylate's chain segments. Finally, in order to electrospin the copolymer solution into fibrous membrane, the effects of monomer feed ratio and spinning parameters were investigated. The prepared fibrous membrane was found to have a potential use as oil absorbent.

4.
Environ Sci Pollut Res Int ; 20(6): 4137-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23238599

RESUMO

Polypropylene (PP) and poly(butylmethacrylate-co-hydroxyethylmethacrylate) (PBMA-co-HEMA) nonwoven materials as oil absorbents have been fabricated for the first time via melt blown method. As-prepared nonwovens were investigated in terms of mass per unit area, density, air permeability, contact angle, and morphology observations for fiber diameter distribution and single fiber surface by a field emission scanning electron microscope. The nonwovens are demonstrated as fast and efficient absorbents for various kinds of oils with oil absorbency up to seven to ten times their own weight. The nonwovens show excellent water repulsion but superoleophilic properties. The measured contact angles for water and toluene are more than 127° and ca. 0°, respectively. The addition of PBMA-co-HEMA makes the nonwoven surface more hydrophobic while conserving superoleophilicity. Compared with PP nonwoven, broad diameter distribution of the blend nonwoven is attributed to poor melt fluidity of PBMA-co-HEMA. In terms of single fiber, coarse surface and the presence of point-like convexities lead to the fibers being more readily wetted by oil. More interesting, oil-water separation and oil recovery can be easily carried out by filter and absorption-desorption process, the recovered materials contained hardly any oil droplet and could be reused for next cycles.


Assuntos
Metacrilatos/química , Óleos/análise , Óleos/química , Ácidos Polimetacrílicos/química , Polipropilenos/química , Absorção , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos/análise , Ácidos Polimetacrílicos/análise , Polipropilenos/análise , Água/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA