Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 91(18): 11661-11669, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31442030

RESUMO

Antibody-drug conjugates (ADCs) are designed to combine the target specificity of monoclonal antibodies and potent cytotoxin drugs to achieve better therapeutic outcomes. Comprehensive evaluation of the quality attributes of ADCs is critical for drug development but remains challenging due to heterogeneity of the construct. Currently, peptide mapping with reversed-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the predominant approach to characterize ADCs. However, it is suboptimal for sequence characterization and quantification of ADCs because it lacks a comprehensive view of coexisting variants and suffers from varying ionization effects of drug-conjugated peptides compared to unconjugated counterparts. Here, we present the first middle-down RPLC-MS analysis of both cysteine (Adcetris; BV) and lysine (Kadcyla; T-DM1) conjugated ADCs at the subunit level (∼25 kDa) with electron transfer dissociation (ETD). We successfully achieved high-resolution separation of subunit isomers arising from different drug conjugation and subsequently localized the conjugation sites. Moreover, we obtained a comprehensive overview of the microvariants associated with each subunits and characterized them such as oxidized variants with different sites. Furthermore, we observed relatively high levels of conjugation near complementarity-determining regions (CDRs) from the heavy chain but no drug conjugation near CDRs of light chain (Lc) from lysine conjugated T-DM1. Based on the extracted ion chromatograms, we accurately measured average drug to antibody ratio (DAR) values and relative occupancy of drug-conjugated subunits. Overall, the middle-down MS approach enables the evaluation of multiple quality attributes including DAR, positional isomers, conjugation sites, occupancy, and microvariants, which potentially opens up a new avenue to characterize ADCs.


Assuntos
Ado-Trastuzumab Emtansina/química , Brentuximab Vedotin/química , Imunoconjugados/análise , Imunoconjugados/química , Ado-Trastuzumab Emtansina/análise , Brentuximab Vedotin/análise , Cromatografia de Fase Reversa , Cisteína/química , Transporte de Elétrons , Lisina/química , Espectrometria de Massas em Tandem/métodos
2.
MAbs ; 11(1): 106-115, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230956

RESUMO

The pharmaceutical industry's interest in monoclonal antibodies (mAbs) and their derivatives has spurred rapid growth in the commercial and clinical pipeline of these effective therapeutics. The complex micro-heterogeneity of mAbs requires in-depth structural characterization for critical quality attribute assessment and quality assurance. Currently, mass spectrometry (MS)-based methods are the gold standard in mAb analysis, primarily with a bottom-up approach in which immunoglobulins G (IgGs) and their variants are digested into peptides to facilitate the analysis. Comprehensive characterization of IgGs and the micro-variants remains challenging at the proteoform level. Here, we used both top-down and middle-down MS for in-depth characterization of a human IgG1 using ultra-high resolution Fourier transform MS. Our top-down MS analysis provided characteristic fingerprinting of the IgG1 proteoforms at unit mass resolution. Subsequently, the tandem MS analysis of intact IgG1 enabled the detailed sequence characterization of a representative IgG1 proteoform at the intact protein level. Moreover, we used the middle-down MS analysis to characterize the primary glycoforms and micro-variants. Micro-variants such as low-abundance glycoforms, C-terminal glycine clipping, and C-terminal proline amidation were characterized with bond cleavages higher than 44% at the subunit level. By combining top-down and middle-down analysis, 76% of bond cleavage (509/666 amino acid bond cleaved) of IgG1 was achieved. Taken together, we demonstrated the combination of top-down and middle-down MS as powerful tools in the comprehensive characterization of mAbs.


Assuntos
Anticorpos Monoclonais/química , Análise de Fourier , Espectrometria de Massas em Tandem/métodos , Ciclotrons , Humanos
3.
Cell Discov ; 3: 17027, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28884018

RESUMO

Protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase; it forms diverse heterotrimeric holoenzymes that counteract kinase actions. Using a peptidome that tiles the disordered regions of the human proteome, we identified proteins containing [LMFI]xx[ILV]xEx motifs that serve as interaction sites for B'-family PP2A regulatory subunits and holoenzymes. The B'-binding motifs have important roles in substrate recognition and in competitive inhibition of substrate binding. With more than 100 novel ligands identified, we confirmed that the recently identified LxxIxEx B'α-binding motifs serve as common binding sites for B' subunits with minor variations, and that S/T phosphorylation or D/E residues at positions 2, 7, 8 and 9 of the motifs reinforce interactions. Hundreds of proteins in the human proteome harbor intrinsic or phosphorylation-responsive B'-interaction motifs, and localize at distinct cellular organelles, such as midbody, predicting kinase-facilitated recruitment of PP2A-B' holoenzymes for tight spatiotemporal control of phosphorylation at mitosis and cytokinesis. Moroever, Polo-like kinase 1-mediated phosphorylation of Cyk4/RACGAP1, a centralspindlin component at the midbody, facilitates binding of both RhoA guanine nucleotide exchange factor (epithelial cell transforming sequence 2 (Ect2)) and PP2A-B' that in turn dephosphorylates Cyk4 and disrupts Ect2 binding. This feedback signaling loop precisely controls RhoA activation and specifies a restricted region for cleavage furrow ingression. Our results provide a framework for further investigation of diverse signaling circuits formed by PP2A-B' holoenzymes in various cellular processes.

4.
Clin Chim Acta ; 420: 82-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23107929

RESUMO

BACKGROUND: Cardiac troponin I (cTnI) is the current standard biomarker for diagnosing acute myocardial infarction and for risk-stratification of acute coronary syndromes in patients. However, it remains unclear how the epitope specificity of antibodies in immunoassays influences the detection of various modified forms of cTnI. METHODS: Four mouse anti-human cTnI monoclonal antibodies targeting different regions of human cTnI were chosen for immunoaffinity purification of cTnI from human and swine cardiac tissue. High-resolution intact protein mass spectrometry was employed to assess the comparative performance of these four antibodies in detecting modified forms of cTnI. RESULTS: Our data revealed that antibody selection significantly impacts the relative protein yield of cTn from immunoaffinity purification. Remarkably, a single amino acid variation in cTnI (G->S) in the epitope region completely abolished the binding between monoclonal antibody 560 and swine cTnI in solution. Moreover, proteolytic degradation around the epitope region severely compromised the detection of proteolytic fragment forms of cTnI by monoclonal antibodies. In contrast, the phosphorylation status near the epitope region did not significantly affect the antibody recognition of cTnI. CONCLUSION: Caution needs to be taken in the interpretation of the data produced by immuno-assays with monoclonal antibodies against various epitopes of cTnI.


Assuntos
Anticorpos Monoclonais/metabolismo , Troponina I/metabolismo , Sequência de Aminoácidos , Animais , Epitopos/química , Humanos , Imunoensaio , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Miocárdio/metabolismo , Suínos , Troponina I/análise
5.
J Proteome Res ; 12(1): 187-98, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23256820

RESUMO

Tropomyosins (Tm) constitute a family of ubiquitous and highly conserved actin-binding proteins, playing essential roles in a variety of biological processes. Tm isoforms produced by multiple Tm encoding genes and alternatively expressed exons along with post-translational modifications (PTMs) regulate Tm function. Therefore, to gain a better understanding of the functional role of Tm, it is essential to fully characterize Tm isoforms. Herein, we developed a top-down high-resolution mass spectrometry (MS)-based targeted proteomics method for comprehensive characterization of Tm isoforms. α-Tm was identified to be the predominant isoform in swine cardiac muscle. We further characterized its sequence and localized the PTMs such as acetylation and phosphorylation as well as amino acid polymorphisms. Interestingly, we discovered a "novel" Tm isoform that does not match with any of the currently available swine Tm sequences. A deep sequencing of this isoform by top-down MS revealed an exact match with mouse ß-Tm sequence, suggesting that this "novel" isoform is swine ß-Tm which is 100% conserved between swine and mouse. Taken together, we demonstrated that top-down targeted proteomics provides a powerful tool for deep sequencing of Tm isoforms from genetic variations together with complete mapping of the PTM sites.


Assuntos
Espectrometria de Massas , Isoformas de Proteínas , Tropomiosina , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Miocárdio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Suínos/genética , Suínos/metabolismo , Tropomiosina/genética , Tropomiosina/metabolismo
6.
J Proteome Res ; 10(9): 4054-65, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21751783

RESUMO

The rapid increase in the prevalence of chronic heart failure (CHF) worldwide underscores an urgent need to identify biomarkers for the early detection of CHF. Post-translational modifications (PTMs) are associated with many critical signaling events during disease progression and thus offer a plethora of candidate biomarkers. We have employed a top-down quantitative proteomics methodology for comprehensive assessment of PTMs in whole proteins extracted from normal and diseased tissues. We systematically analyzed 36 clinical human heart tissue samples and identified phosphorylation of cardiac troponin I (cTnI) as a candidate biomarker for CHF. The relative percentages of the total phosphorylated cTnI forms over the entire cTnI populations (%P(total)) were 56.4 ± 3.5%, 36.9 ± 1.6%, 6.1 ± 2.4%, and 1.0 ± 0.6% for postmortem hearts with normal cardiac function (n = 7), early stage of mild hypertrophy (n = 5), severe hypertrophy/dilation (n = 4), and end-stage CHF (n = 6), respectively. In fresh transplant samples, the %P(total) of cTnI from nonfailing donor (n = 4), and end-stage failing hearts (n = 10) were 49.5 ± 5.9% and 18.8 ± 2.9%, respectively. Top-down MS with electron capture dissociation unequivocally localized the altered phosphorylation sites to Ser22/23 and determined the order of phosphorylation/dephosphorylation. This study represents the first clinical application of top-down MS-based quantitative proteomics for biomarker discovery from tissues, highlighting the potential of PTMs as disease biomarkers.


Assuntos
Biomarcadores/análise , Insuficiência Cardíaca/metabolismo , Miocárdio/química , Proteômica/métodos , Troponina I/análise , Sequência de Aminoácidos , Biomarcadores/química , Doença Crônica , Humanos , Modelos Lineares , Espectrometria de Massas , Dados de Sequência Molecular , Fenótipo , Fosforilação , Processamento de Proteína Pós-Traducional , Troponina I/química
7.
Biochemistry ; 50(27): 6081-92, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21639091

RESUMO

Cardiac troponin T (cTnT), the tropomyosin binding subunit of the troponin complex, plays a pivotal regulatory role in the Ca(2+)-mediated interaction between actin thin filament and myosin thick filament. The post-translational modifications (PTMs) and alternative splicing of cTnT may represent important regulatory mechanisms of cardiac contractility. However, a complete characterization of PTMs and alternatively spliced isoforms in cTnT present in vivo is lacking. Top-down protein mass spectrometry (MS) analyzes whole proteins, thus providing a global view of all types of modifications, including PTMs and sequence variants, simultaneously in one spectrum without a priori knowledge. In this study, we applied an integrated immunoaffinity chromatography and top-down MS approach to comprehensively characterize PTMs and alternatively spliced isoforms of cTnT purified from healthy human and wild-type mouse heart tissue. High-resolution Fourier transform MS revealed that human cTnT (hcTnT) and mouse cTnT (mcTnT) have similar phosphorylation patterns, whereas higher molecular heterogeneity was observed for mcTnT than hcTnT. Further MS/MS fragmentation of monophosphorylated hcTnT and mcTnT by electron capture dissociation and collisionally activated dissociation unambiguously identified Ser1 as the conserved in vivo phosphorylation site. In contrast, we identified a single spliced isoform for hcTnT but three alternatively spliced isoforms for mcTnT. Moreover, we observed distinct proteolytic degradation products for hcTnT and mcTnT. This study also demonstrates the advantage of top-down MS/MS with complementary fragmentation techniques for the identification of modification sites in the highly acidic N-terminal region of cTnT.


Assuntos
Processamento Alternativo , Sequência Conservada , Miocárdio/metabolismo , Peptídeo Hidrolases/metabolismo , Troponina T/metabolismo , Adulto , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Sequência Conservada/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Contração Miocárdica/genética , Miocárdio/enzimologia , Fosforilação/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Troponina T/genética , Troponina T/isolamento & purificação
8.
ACS Med Chem Lett ; 2(5): 326-30, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900313

RESUMO

Prostaglandin D2 (PGD2) plays a key role in mediating allergic reactions seen in asthma, allergic rhinitis, and atopic dermatitis. PGD2 exerts its activity through two G protein-coupled receptors (GPCRs), prostanoid D receptor (DP or DP1), and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2 or DP2). We report the optimization of a series of phenylacetic acid derivatives in an effort to improve the dual activity of AMG 009 against DP and CRTH2. These efforts led to the discovery of AMG 853 (2-(4-(4-(tert-butylcarbamoyl)-2-(2-chloro-4-cyclopropylphenyl sulfonamido)phenoxy)-5-chloro-2-fluorophenyl)acetic acid), which is being evaluated in human clinical trials for asthma.

9.
Anal Chem ; 82(17): 7193-201, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20704311

RESUMO

Mass spectrometry (MS)-based phosphoproteomics remains challenging due to the low abundance of phosphoproteins and substoichiometric phosphorylation. This demands better methods to effectively enrich phosphoproteins/peptides prior to MS analysis. We have previously communicated the first use of mesoporous zirconium dioxide (ZrO(2)) nanomaterials for effective phosphopeptide enrichment. Here, we present the full report including the synthesis, characterization, and application of mesoporous titanium dioxide (TiO(2)), ZrO(2), and hafnium dioxide (HfO(2)) in phosphopeptide enrichment and MS analysis. Mesoporous ZrO(2) and HfO(2) are demonstrated to be superior to TiO(2) for phosphopeptide enrichment from a complex mixture with high specificity (>99%), which could almost be considered as a "purification", mainly because of the extremely large active surface area of mesoporous nanomaterials. A single enrichment and Fourier transform MS analysis of phosphopeptides digested from a complex mixture containing 7% of alpha-casein identified 21 out of 22 phosphorylation sites for alpha-casein. Moreover, the mesoporous ZrO(2) and HfO(2) can be reused after a simple solution regeneration procedure with comparable enrichment performance to that of fresh materials. Mesoporous ZrO(2) and HfO(2) nanomaterials hold great promise for applications in MS-based phosphoproteomics.


Assuntos
Espectrometria de Massas/métodos , Metais/química , Nanoestruturas/química , Óxidos/química , Fosfopeptídeos/análise , Sequência de Aminoácidos , Caseínas/química , Caseínas/metabolismo , Háfnio/química , Dados de Sequência Molecular , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/química , Tripsina/metabolismo , Zircônio/química
10.
11.
Protein Eng Des Sel ; 22(8): 479-88, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19549717

RESUMO

Tg2576 mice produce high levels of beta-amyloid (Abeta) and develop amyloid deposits, but lack neurofibrillary tangles and do not suffer the extensive neuronal cell loss characteristic of Alzheimer's disease. Protection from Abeta toxicity has been attributed to up-regulation of transthyretin (TTR), a normal component of plasma and cerebrospinal fluid. We compared the effect of TTR purified from human plasma (pTTR) with that produced recombinantly (rTTR) on Abeta aggregation and toxicity. pTTR slowed Abeta aggregation but failed to protect primary cortical neurons from Abeta toxicity. In contrast, rTTR accelerated aggregation, while effectively protecting neurons. This inverse correlation between Abeta aggregation kinetics and toxicity is consistent with the hypothesis that soluble intermediates rather than insoluble fibrils are the most toxic Abeta species. We carried out a detailed comparison of pTTR with rTTR to ascertain the probable cause of these different effects. No differences in secondary, tertiary or quaternary structure were detected. However, pTTR differed from rTTR in the extent and nature of modification at Cys10. We hypothesize that differential modification at Cys10 regulates TTR's effect on Abeta aggregation and toxicity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Cisteína/metabolismo , Pré-Albumina/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Animais , Sobrevivência Celular , Células Cultivadas , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Feminino , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Transmissão , Neurônios/citologia , Neurônios/efeitos dos fármacos , Pré-Albumina/química , Pré-Albumina/farmacologia , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
12.
Proc Natl Acad Sci U S A ; 106(31): 12658-63, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19541641

RESUMO

Cardiac myosin binding protein C (cMyBP-C), bound to the sarcomere's myosin thick filament, plays an important role in the regulation of muscle contraction. cMyBP-C is a large multidomain protein that interacts with myosin, titin, and possibly actin. Mutations in cMyBP-C are the most common known cause of heritable hypertrophic cardiomypathies. Phosphorylation of cMyBP-C plays an essential role in the normal cardiac function. cMyBP-C (142 kDa) has 81 serine and 73 threonine residues presenting a major challenge for unequivocal identification of specific phosphorylation sites. Top-down mass spectrometry, which directly analyzes intact proteins, is a powerful technique to universally observe and quantify protein posttranslational modifications without a priori knowledge. Here, we have extended top-down electron capture dissociation mass spectrometry to comprehensively characterize mouse cMyBP-C expressed in baculovirus. We have unambiguously identified all of the phosphorylation sites in the truncated (28-115 kDa) and full-length forms of cMyBP-C (142 kDa) and characterized the sequential phosphorylations, using a combination of top-down and middle-down (limited proteolysis) MS approach, which ensures full sequence coverage. Unit mass resolution and high mass accuracy (<5 ppm) have been achieved for a 115-kDa protein (the largest protein isotopically resolved to date). Remarkably, we discovered that truncations in recombinant proteins, even a seemingly minor one, can dramatically alter its phosphorylation state, which is significant because truncated recombinant proteins are routinely substituted for their full-length forms in crystal structure and functional studies. Our study provides direct evidence of alterations in the posttranslational state between the truncated and full-length recombinant proteins, which can lead to variations in structure and function.


Assuntos
Proteínas de Transporte/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes/biossíntese , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
13.
Protein Sci ; 18(6): 1272-80, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19472346

RESUMO

Coactivator-associated arginine methyltransferase 1 (CARM1), originally defined as a coactivator for steroid receptors, is a member of the protein arginine methyltransferases. Here, we report the discovery and characterization of an automethylation event by AgCARM1, a CARM1 homologue in the mosquito Anopheles gambiae, using top-down high resolution tandem mass spectrometry, which allows fine mapping of modifications in the intact protein accurately and quantitatively without priori knowledge. Unexpectedly, we found that AgCARM1 has already been predominantly dimethylated during its expression in Escherichia coli. A single arginine methylation site, R485, was identified which is conserved among CARM1 in insects. No methylation was observed in the intact AgCARM1(R485K) mutant where R485 is mutated to lysine, which confirms that R485 is the only detectable methylation site. Using AgCARM1 methyltransferase defective mutants, we confirmed that this is an automethylation event and show the automethylation of AgCARM1 occurs intermolecularly. This study represents the first comprehensive characterization of an automethylation event by top-down mass spectrometry. The unexpected high percentage of automethylated recombinant AgCARM1 expressed in E. coli may shed light on other bacterially expressed post-translational modifying enzymes, which could be modified but overlooked in biochemical and structural studies. Top-down high resolution tandem mass spectrometry thus provides unique opportunities for revealing unexpected protein modification, localizing specific modification to one amino acid, and delineating molecular mechanism of an enzyme.


Assuntos
Anopheles/enzimologia , Proteína-Arginina N-Metiltransferases/química , Sequência de Aminoácidos , Animais , Metilação , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem , Transfecção
15.
Bioorg Med Chem Lett ; 16(10): 2800-3, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16497499

RESUMO

A series of 2-aminothiazole-derived antagonists of the CCR4 receptor has been synthesized and their affinity for the receptor evaluated using a [(125)I]TARC (CCL17) displacement assay. Optimization of these compounds for potency and pharmacokinetic properties led to the discovery of potent, orally bioavailable antagonists.


Assuntos
Receptores de Quimiocinas/antagonistas & inibidores , Tiazóis/farmacologia , Linhagem Celular , Humanos , Receptores CCR4 , Tiazóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...