Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(21): 5761-5769, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38776132

RESUMO

Metal-free diradicals based on polycyclic aromatic hydrocarbons are promising candidates for organic spintronics due to their stable magnetism and tunable spin coupling. However, distinguishing and elucidating the origins of ferromagnetic and antiferromagnetic interactions in these systems remain challenging. Here, we investigate the 2-OS diradical molecule sandwiched between gold electrodes using a combined density functional theory and hierarchical equations of motion approach. We find that the dihedral angle between the radical moieties controls the nature and strength of the intramolecular spin coupling, transitioning smoothly from antiferromagnetic to ferromagnetic as the angle increases. Distinct features in the inelastic electron tunneling spectra are identified that can discern the two coupling regimes, including spin excitation steps whose energies directly reveal the exchange coupling constant. Mechanical stretching of the junction is predicted to modulate the spectral line shapes by adjusting the hybridization of the molecular radicals with the electrodes. Our work elucidates the electronic origin of tunable spin interactions in 2-OS and provides spectroscopic fingerprints for characterizing magnetism in metal-free diradicals.

2.
J Phys Chem Lett ; 15(16): 4333-4341, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38619466

RESUMO

Magnetic molecules adsorbed on two-dimensional (2D) substrates have attracted broad attention because of their potential applications in quantum device applications. Experimental observations have demonstrated substantial alteration in the spin excitation energy of iron phthalocyanine (FePc) molecules when adsorbed on nitrogen-doped graphene substrates. However, the underlying mechanism responsible for this notable change remains unclear. To shed light on this, we employ an embedding method and ab initio quantum chemistry calculations to investigate the effects of surface doping on molecular properties. Our study unveils an unconventional chemical bonding at the interface between the FePc molecule and the N-doped graphene. This bonding interaction, stronger than non-covalent interactions, significantly modifies the magnetic anisotropy energy of the adsorbed molecule, consistent with experimental observations. These findings provide valuable insights into the electronic and magnetic properties of molecules on 2D substrates, offering a promising pathway for precise manipulation of molecular spin states.

3.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38385516

RESUMO

The entanglement between system and bath often plays a pivotal role in complex systems spanning multiple orders of magnitude. A system-bath entanglement theorem was previously established for Gaussian environments in J. Chem. Phys. 152, 034102 (2020) regarding linear response functions. This theorem connects the entangled responses to the local system and bare bath properties. In this work, we generalize it to correlation functions. Key steps in derivations involve using the generalized Langevin dynamics for hybridizing bath modes and the Bogoliubov transformation that maps the original finite-temperature reservoir to an effective zero-temperature vacuum by employing an auxiliary bath. The generalized theorem allows us to evaluate the system-bath entangled correlations and the bath mode correlations in the total composite space, as long as we know the bare-bath statistical properties and obtain the reduced system correlations. To demonstrate the cross-scale entanglements, we utilize the generalized theorem to calculate the solvation free energy of an electron transfer system with intramolecular vibrational modes.

4.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37431917

RESUMO

In this work, we investigate the multimode Brownian oscillators in nonequilibrium scenarios with multiple reservoirs at different temperatures. For this purpose, an algebraic method is proposed. This approach gives the exact time-local equation of motion for the reduced density operator, from which we can easily extract not only the reduced system but also hybrid bath dynamical information. The resulting steady-state heat current is found to be numerically consistent with another discrete imaginary-frequency method followed by Meir-Wingreen's formula. It is anticipated that the development in this work would constitute an indispensable component of nonequilibrium statistical mechanics for open quantum systems.

5.
J Chem Phys ; 159(2)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428061

RESUMO

In this paper, we present an extended dissipaton equation of motion for studying the dynamics of electronic impurity systems. Compared with the original theoretical formalism, the quadratic couplings are introduced into the Hamiltonian accounting for the interaction between the impurity and its surrounding environment. By exploiting the quadratic fermionic dissipaton algebra, the proposed extended dissipaton equation of motion offers a powerful tool for studying the dynamical behaviors of electronic impurity systems, particularly in situations where nonequilibrium and strongly correlated effects play significant roles. Numerical demonstrations are carried out to investigate the temperature dependence of the Kondo resonance in the Kondo impurity model.

6.
J Chem Phys ; 158(21)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37260002

RESUMO

Dissipaton theory had been proposed as an exact, nonperturbative approach to deal with open quantum system dynamics, where the influence of the Gaussian environment is characterized by statistical quasi-particles, named dissipatons. In this work, we revisit the dissipaton equation of motion theory and establish an equivalent dissipaton-embedded quantum master equation (DQME) that gives rise to dissipatons as generalized Brownian particles. As explained in this work, the DQME supplies a direct approach to investigate the statistical characteristics of dissipatons and, thus, the physically supporting hybrid bath modes. Numerical demonstrations are carried out on the electron transfer model, exhibiting the transient statistical properties of the solvation coordinate.

7.
Transpl Immunol ; 79: 101856, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196867

RESUMO

OBJECTIVE: Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in maintaining peripheral immune tolerance. The use of tolerogenic DCs (tolDCs), i.e., semi-mature DCs that express co-stimulatory molecules but not pro-inflammatory cytokines, has been proposed. However, the mechanism of tolDCs induced by minocycline is still unclear. Our previous bioinformatics analyses based on multiple databases suggested that the suppressor of cytokine signaling 1/Toll-like receptor 4/NF-κB (SOCS1/TLR4/NF-κB) signal pathway was associated with DCs maturation. Thus, we studied whether minocycline could induce DC tolerance through this pathway. METHODS: A search for potential targets was carried out through public databases, and pathway analysis was performed on these potential targets to obtain pathways relevant to the experiment. Flow cytometry was used to detect the expression of DC surface markers CD11c, CD86, and CD80, and major histocompatibility complex II. The secretion of interleukin (IL)-12p70, tumor necrosis factor alpha (TNF- α), and IL-10 in the DC supernatant was detected by enzyme-linked immunoassay. The ability of three groups (Ctrl-DCs, Mino-DCs, and LPS-DCs) of DCs to stimulate allogeneic CD4+ T cells was analyzed using a mixed lymphocyte reaction assay. Western blotting was used to detect the expression of TLR4, NF-κB-p65, NF-κB-p-p65, IκB-α, and SOCS1 proteins. RESULTS: The hub gene plays a vital role in biological processes; in related pathways, the regulation of other genes is often affected by it. The SOCS1/TLR4/NF-κB signaling pathway was further validated by searching for potential targets through public databases to obtain relevant pathways. The minocycline-induced tolDCs showed characteristics of semi-mature DCs. Moreover, the IL-12p70 and TNF-α levels in the minocycline-stimulated DC group (Mino-DC group) were lower than those in the lipopolysaccharide (LPS)-DC group, and the IL-10 levels were higher in the Mino-DC group than in the LPS-DC and control DC groups. In addition, the Mino-DC group had decreased protein expression levels of TLR4 and NF-κB-p65 and upregulated protein levels of NF-κB-p-p65, IκB-α, and SOCS1 compared with the other groups. CONCLUSION: The results of this study indicate that minocycline could improve the tolerance of DCs probably by blocking the SOCS1/TLR4/NF-κB signaling pathway.


Assuntos
Interleucina-10 , NF-kappa B , NF-kappa B/metabolismo , Interleucina-10/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Interleucina-12 , Fator de Necrose Tumoral alfa/metabolismo , Tolerância Imunológica , Células Dendríticas
8.
J Chem Phys ; 158(15)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37094007

RESUMO

Machine learning (ML) has demonstrated its potential usefulness for the development of density functional theory methods. In this work, we construct an ML model to correct the density functional approximations, which adopts semilocal descriptors of electron density and density derivative and is trained by accurate reference data of relative and absolute energies. The resulting ML-corrected functional is tested on a comprehensive dataset including various types of energetic properties. Particularly, the ML-corrected Becke's three parameters and the Lee-Yang-Parr correlation (B3LYP) functional achieves a substantial improvement over the original B3LYP on the prediction of total energies of atoms and molecules and atomization energies, and a marginal improvement on the prediction of ionization potentials, electron affinities, and bond dissociation energies; whereas, it preserves the same level of accuracy for isomerization energies and reaction barrier heights. The ML-corrected functional allows for fully self-consistent-field calculation with similar efficiency to the parent functional. This study highlights the progress of building an ML correction toward achieving a functional that performs uniformly better than B3LYP.

9.
J Chem Phys ; 158(7): 074102, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36813728

RESUMO

In this paper, we present a comprehensive account of quantum dissipation theories with the quadratic environment couplings. The theoretical development includes the Brownian solvation mode embedded hierarchical quantum master equations, a core-system hierarchy construction that verifies the extended dissipaton equation of motion (DEOM) formalism [R. X. Xu et al., J. Chem. Phys. 148, 114103 (2018)]. Developed are also the quadratic imaginary-time DEOM for equilibrium and the λ(t)-DEOM for nonequilibrium thermodynamics problems. Both the celebrated Jarzynski equality and Crooks relation are accurately reproduced, which, in turn, confirms the rigorousness of the extended DEOM theories. While the extended DEOM is more numerically efficient, the core-system hierarchy quantum master equation is favorable for "visualizing" the correlated solvation dynamics.

10.
J Chem Phys ; 158(1): 014106, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36610957

RESUMO

Recent technological advancement in scanning tunneling microscopes has enabled the measurement of spin-field and spin-spin interactions in single atomic or molecular junctions with an unprecedentedly high resolution. Theoretically, although the fermionic hierarchical equations of motion (HEOM) method has been widely applied to investigate the strongly correlated Kondo states in these junctions, the existence of low-energy spin excitations presents new challenges to numerical simulations. These include the quest for a more accurate and efficient decomposition for the non-Markovian memory of low-temperature environments and a more careful handling of errors caused by the truncation of the hierarchy. In this work, we propose several new algorithms, which significantly enhance the performance of the HEOM method, as exemplified by the calculations on systems involving various types of low-energy spin excitations. Being able to characterize both the Kondo effect and spin excitation accurately, the HEOM method offers a sophisticated and versatile theoretical tool, which is valuable for the understanding and even prediction of the fascinating quantum phenomena explored in cutting-edge experiments.

11.
J Chem Phys ; 157(8): 084119, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36050008

RESUMO

Excitation energy transfer (EET) and electron transfer (ET) are crucially involved in photosynthetic processes. In reality, the photosynthetic reaction center constitutes an open quantum system of EET and ET, which manifests interplay of pigments, solar light, and phonon baths. So far, theoretical studies have been mainly based on master equation approaches in the Markovian condition. The non-Markovian environmental effect, which may play a crucial role, has not been sufficiently considered. In this work, we propose a mixed dynamic approach to investigate this open system. The influence of phonon bath is treated via the exact dissipaton equation of motion (DEOM), while that of photon bath is via the Lindblad master equation. Specifically, we explore the effect of non-Markovian quantum phonon bath on the coherent transfer dynamics and its manipulation on the current-voltage behavior. Distinguished from the results of the completely Markovian-Lindblad equation and those adopting the classical environment description, the mixed DEOM-Lindblad simulations exhibit transfer coherence up to a few hundred femtoseconds and the related environmental manipulation effect on the current. These non-Markovian quantum coherent effects may be extended to more complex and realistic systems and be helpful in the design of organic photovoltaic devices.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Transferência de Energia , Modelos Teóricos , Fotossíntese , Teoria Quântica
12.
J Chem Phys ; 157(4): 044102, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35922347

RESUMO

For open quantum systems, the Gaussian environmental dissipative effect can be represented by statistical quasi-particles, namely, dissipatons. We exploit this fact to establish the dissipaton thermofield theory. The resulting generalized Langevin dynamics of absorptive and emissive thermofield operators are effectively noise-resolved. The system-bath entanglement theorem is then readily followed between an important class of nonequilibrium steady-state correlation functions. All these relations are validated numerically. A simple corollary is the transport current expression, which exactly recovers the result obtained from the nonequilibrium Green's function formalism.

13.
J Chem Phys ; 157(5): 054109, 2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35933203

RESUMO

The fluctuation theorem, where the central quantity is the work distribution, is an important characterization of nonequilibrium thermodynamics. In this work, based on the dissipaton-equation-of-motion theory, we develop an exact method to evaluate the work distributions in quantum impurity system-bath mixing processes in the presence of non-Markovian and strong couplings. Our results not only precisely reproduce the Jarzynski equality and Crooks relation but also reveal rich information on large deviation. The numerical demonstrations are carried out with a spin-boson model system.

14.
J Phys Chem A ; 126(27): 4554-4561, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35786902

RESUMO

Electron transfer (ET) processes are of broad interest in modern chemistry. With the advancements of experimental techniques, one may modulate the ET via such events as light-matter interactions. In this work, we study the ET under a Floquet modulation occurring in the donor-bridge-acceptor systems, with the rate kernels projected out from the exact dissipaton equation of motion formalism. This together with the Floquet theorem enables us to investigate the interplay between the intrinsic non-Markovianity and the driving periodicity. The observed rate kernel exhibits a Herzberg-Teller-like mechanism induced by the bridge fluctuation subject to effective modulation.

15.
J Chem Phys ; 156(22): 221102, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705405

RESUMO

In this Communication, we propose the time-domain Prony fitting decomposition (t-PFD) as an accurate and efficient exponential series method, applicable to arbitrary bath correlation functions. The resulting numerical efficiency of hierarchical equations of motion (HEOM) formalism is greatly optimized, especially in low temperature regimes that would be inaccessible with other methods. For demonstration, we calibrate the present t-PFD against the celebrated Padé spectrum decomposition method, followed by converged HEOM evaluations on the single-impurity Anderson model system.

16.
J Phys Chem A ; 126(6): 970-978, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35113552

RESUMO

The past decade has seen an increasing interest in designing sophisticated density functional approximations (DFAs) by integrating the power of machine learning (ML) techniques. However, application of the ML-based DFAs is often confined to simple model systems. In this work, we construct an ML correction to the widely used Perdew-Burke-Ernzerhof (PBE) functional by establishing a semilocal mapping from the electron density and reduced gradient to the exchange-correlation energy density. The resulting ML-corrected PBE is immediately applicable to any real molecule and yields significantly improved heats of formation while preserving the accuracy for other thermochemical and kinetic properties. This work highlights the prospect of combining the power of data-driven ML methods with physics-inspired derivations for reaching the heaven of chemical accuracy.

17.
Plant Sci ; 314: 111102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895539

RESUMO

Caffeoyl CoA O-methyltransferases (CCoAOMTs) catalyze the transfer of a methyl group from S-adenosylmethionine to a hydroxyl moiety of caffeoyl-CoA as part of the lignin biosynthetic pathway. CCoAOMT-like proteins also catalyze to a variety of flavonoids, coumarins, and phenylpropanoids. Several CCoAOMTs that prefer flavonoids as substrates have been characterized from liverworts. Here, we cloned two CCoAOMT genes, MpalOMT2 and MpalOMT3, from the liverwort Marchantia paleacea. MpalOMT3 has a second ATG codon downstream and the truncated version that lacks 11 amino acids was named MpalOMT3-Tr. Phylogenetic analysis placed MpalOMT3 at the root of the clade with true CCoAOMTs from vascular plants and placed MpalOMT2 between the CCoAOMT and CCoAOMT-like proteins. Recombinant OMTs methylated caffeoyl CoA, phenylpropanoids, and flavonoids containing two or three vicinal hydroxyl groups. MpalOMT3 showed higher catalytic activity for phenylpropanoids than MpalOMT2, but MpalOMT2 showed more promiscuous towards eriodictyol and myricetin. The lignin content in Arabidopsis thaliana stems increased with constitutive heterologous expression of MpalOMT3-Tr, but not MpalOMT2. Subcellular localization experiments indicated that the N-terminus of MpalOMT3 probably served as a chloroplast transit peptide and inhibited its enzymatic activity. Combining the phylogenetic analysis and functional characterization, we conclude that the liverwort M. paleacea harbors true CCoAOMT and CCoAOMT-like genes.


Assuntos
Lignina/biossíntese , Lignina/genética , Marchantia/enzimologia , Marchantia/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Clonagem Molecular , Genes de Plantas , Variação Genética , Genótipo , Filogenia
18.
J Chem Phys ; 155(17): 174111, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742182

RESUMO

Accurate and efficient simulation on quantum dissipation with nonlinear environment couplings remains a challenging task nowadays. In this work, we propose to incorporate the stochastic fields, which resolve just the nonlinear environment coupling terms, into the dissipaton-equation-of-motion (DEOM) construction. The stochastic fields are introduced via the Hubbard-Stratonovich transformation. After the transformation, the resulted stochastic-fields-dressed (SFD) total Hamiltonian contains only linear environment coupling terms. On the basis of that, SFD-DEOM can then be constructed. The resultant SFD-DEOM, together with the ensemble average over the stochastic fields, constitutes an exact and nonperturbative approach to quantum dissipation under nonlinear environment couplings. It is also of relatively high efficiency and stability due to the fact that only nonlinear environment coupling terms are dealt with stochastic fields, while linear couplings are still treated as the usual DEOM. Numerical performance and demonstrations are presented with a two-state model system.

19.
J Chem Phys ; 154(24): 244105, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34241336

RESUMO

Excitation energy transfer is crucially involved in a variety of systems. During the process, the non-Condon vibronic coupling and the surrounding solvent interaction may synergetically play important roles. In this work, we study the correlated vibration-solvent influences on the non-Condon exciton spectroscopy. Statistical analysis is elaborated for the overall vibration-plus-solvent environmental effects. Analytic solutions are derived for the linear absorption of monomer systems. General simulations are accurately carried out via the dissipaton-equation-of-motion approach. The resulted spectra in either the linear absorption or strong field regime clearly demonstrate the coherence enhancement due to the synergetic vibration-solvent correlation.

20.
Inorg Chem ; 60(10): 7297-7305, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33914515

RESUMO

The dinuclear iron complex [(H2O)-FeIII-(ppq)-O-(ppq)-FeIII-Cl]3+ (FeIII(ppq), ppq = 2-(pyrid-2'-yl)-8-(1″,10″-phenanthrolin-2″-yl)-quinoline) demonstrates a catalytic activity about one order of magnitude higher than the mononuclear iron complex [Cl-FeIII(dpa)-Cl]+ (FeIII(dpa), dpa = N,N-di(1,10-phenanthrolin-2-yl)-N-isopentylamine) for the oxygen evolution reaction (OER). However, the mechanism behind such an unusually high activity has remained largely unclear. To solve this puzzle, a decomposition-and-reaction mechanism is proposed for the OER with the dinuclear FeIII(ppq) complex as the initial state of the catalytic agent. In this mechanism, the high-valent dinuclear iron complex first dissociates into two mononuclear moieties, and the oxidized mononuclear iron complexes directly catalyze the formation of an O-O bond through a nitrate attack pathway with nitrate functioning as a cocatalyst. Density functional theory calculations reveal that it is the electron-deficient microenvironment around the iron center that gives rise to the remarkable catalytic activity observed experimentally. Therefore, the outstanding performance of the FeIII(ppq) catalyst can be ascribed to the high reactivity of its mononuclear moieties in a high oxidation state, which is concomitant with the structural stability of the low-valent dinuclear complex. The theoretical insights provided by this study could be useful for the optimization and design of novel iron-based water oxidation catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...