Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38973513

RESUMO

BACKGROUND: Patients with cirrhosis commonly undergo endoscopic cyanoacrylate injection for gastric and esophageal variceal bleeding. However, postoperative infections can increase the risk of rebleeding and mortality. AIM: This study aimed to determine the risk of postoperative infections and its associated factors following cyanoacrylate injection treatment in these patients. METHODS: A retrospective analysis was conducted on 57 patients treated with ligation (ligation group), 66 patients treated with cyanoacrylate injection (injection group), and 91 patients treated with conservative treatment (control group) at the Nanchong Central Hospital. RESULTS: The rate of postoperative infection was similar among the cyanoacrylate, ligation, and conservative treatment groups, with no significant statistical difference observed (P = 0.97). Multivariate analysis identified postoperative Child-Pugh score and renal insufficiency as two independent risk factors for postoperative infection. The rebleeding rate in the injection group was significantly lower than in the other groups (P = 0.01). Mortality was significantly higher in the control group compared with the ligation and injection groups (P = 0.01). CONCLUSION: Cyanoacrylate combined with lauromacrogol injection did not significantly increase the risk of infection compared with ligation and conservative treatments, and it was more effective in reducing the risk of rebleeding. This method is safe, effective, and holds clinical value for broader application.

2.
Allergol Immunopathol (Madr) ; 52(4): 38-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38970263

RESUMO

PURPOSE: Sepsis often triggers a systemic inflammatory response leading to multi-organ dysfunction, with complex and not fully understood pathogenesis. This study investigates the therapeutic effects of cimifugin on BV-2 cells under sepsis-induced stress conditions. METHODS: We utilized a BV-2 microglial cell model treated with lipopolysaccharide (LPS) to mimic sepsis. Assessments included cellular vitality, inflammatory cytokine quantification (6 interleukin [6IL]-1ß, interleukin 6 [IL-6], and tumor necrosis factor-α [TNF-α]) via enzyme-linked-immunosorbent serologic assay, and analysis of mRNA expression using real-time polymerase chain reaction. Oxidative stress and mitochondrial function were also evaluated to understand the cellular effects of cimifugin. RESULTS: Cimifugin significantly attenuated LPS-induced inflammatory responses, oxidative stress, and mitochondrial dysfunction. It enhanced cell viability and modulated the secretion and gene expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Notably, cimifugin activated the deacetylase sirtuin 1-nuclear factor erythroid 2-related factor 2 pathway, contributing to its protective effects against mitochondrial damage. CONCLUSION: Cimifugin demonstrates the potential of being an effective treatment for sepsis--induced neuroinflammation, warranting further investigation.


Assuntos
Citocinas , Lipopolissacarídeos , Microglia , Estresse Oxidativo , Animais , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/imunologia , Citocinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/imunologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/imunologia , Anti-Inflamatórios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cromonas , Sirtuína 1
3.
PLoS One ; 19(7): e0300643, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954725

RESUMO

As most teleosts are unable to synthesize vitamin C, supplemental diets containing vitamin C diets play a crucial role in fish health. The aim of this study was to investigate the effect of dietary vitamin C on the intestinal enzyme activity and intestinal microbiota of silver pomfre (Pampus argenteus). Four experimental diets were supplemented with basic diets containing 300 mg of vitamin C/kg (group tjl3), 600 mg of vitamin C/kg (group tjl6), and 1200 mg of vitamin C/kg (group tjl12), as well as vitamin C-free supplemental basic diet (group tjl0), respectively. The four diets were fed to juvenile P. argenteus (average initial weight: 4.68 ± 0.93 g) for 6 weeks. The results showed that the activity of SOD (superoxide dismutase) and CAT (catalase) increased significantly while that of MDA (malondialdehyde) decreased significantly in group tjl3 compared to vitamin group tjl0. At the genus level, groups tjl0, tjl6, and tjl12 contained the same dominant microbial community, Stenotrophomonas, Photobacterium, and Vibrio, whereas group tjl3 was dominated by Stenotrophomonas, Delftia, and Bacteroides. Among the fish fed with a basic diet containing 300 mg of vitamin C/kg, the intestines exhibited a notable abundance of probiotic bacteria, including lactic acid bacteria (Lactobacillus) and Bacillus. The abundance of Aeromonas in groups tjl3 and tjl6 was lower than that of the vitamin C-free supplemental basic diet group, whereas Aeromonas was not detected in group tjl12. In addition, a causative agent of the disease outbreak in cultured P. argenteus, Photobacterium damselae subsp. Damselae (PDD) was the dominant microbiota community in groups tjl0, tjl6 and tjl12, whereas the abundance of PDD in group tjl3 was the lowest among the diets. Taken together, the diets supplied with vitamin C could influence the composition microbial community of P. argenteus. The low level of vitamin C (300 mg of vitamin C/kg per basic diet) supplementation could not only improve the antioxidant capacity but also resist the invasion of pathogenic bacteria.


Assuntos
Antioxidantes , Ácido Ascórbico , Suplementos Nutricionais , Microbioma Gastrointestinal , Animais , Ácido Ascórbico/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Perciformes/microbiologia , Ração Animal/análise , Superóxido Dismutase/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Dieta/veterinária , Catalase/metabolismo
4.
EBioMedicine ; 105: 105212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954976

RESUMO

BACKGROUND: The E1A-associated protein p300 (p300) has emerged as a promising target for cancer therapy due to its crucial role in promoting oncogenic signaling pathways in various cancers, including prostate cancer. This need is particularly significant in prostate cancer. While androgen deprivation therapy (ADT) has demonstrated promising efficacy in prostate cancer, its long-term use can eventually lead to the development of castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC). Notably, p300 has been identified as an important co-activator of the androgen receptor (AR), highlighting its significance in prostate cancer progression. Moreover, recent studies have revealed the involvement of p300 in AR-independent oncogenes associated with NEPC. Therefore, the blockade of p300 may emerge as an effective therapeutic strategy to address the challenges posed by both CRPC and NEPC. METHODS: We employed AI-assisted design to develop a peptide-based PROTAC (proteolysis-targeting chimera) drug that targets p300, effectively degrading p300 in vitro and in vivo utilizing nano-selenium as a peptide drug delivery system. FINDINGS: Our p300-targeting peptide PROTAC drug demonstrated effective p300 degradation and cancer cell-killing capabilities in both CRPC, AR-negative, and NEPC cells. This study demonstrated the efficacy of a p300-targeting drug in NEPC cells. In both AR-positive and AR-negative mouse models, the p300 PROTAC drug showed potent p300 degradation and tumor suppression. INTERPRETATION: The design of peptide PROTAC drug targeting p300 is feasible and represents an efficient therapeutic strategy for CRPC, AR-negative prostate cancer, and NEPC. FUNDING: The funding details can be found in the Acknowledgements section.


Assuntos
Proteína p300 Associada a E1A , Peptídeos , Neoplasias da Próstata , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Humanos , Proteólise/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteína p300 Associada a E1A/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Descoberta de Drogas
5.
Int Immunopharmacol ; 139: 112719, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032470

RESUMO

Autophagy in alveolar macrophages (AMs) is an important mechanism for maintaining immune homeostasis and normal lung tissue function, and insufficient autophagy in AMs may mediate the development of sepsis-induced acute lung injury (SALI). Insufficient autophagy in AMs and the activation of the NLRP3 inflammasome were observed in a mouse model with SALI induced by cecal ligation and puncture (CLP), resulting in the release of a substantial quantity of proinflammatory factors and the formation of SALI. However, after andrographolide (AG) intervention, autophagy in AMs was significantly promoted, the activation of the NLRP3 inflammasome was inhibited, the release of proinflammatory factors and pyroptosis were suppressed, and SALI was then ameliorated. In the MH-S cell model stimulated with LPS, insufficient autophagy was discovered to promote the overactivation of the NLRP3 inflammasome. AG was found to significantly promote autophagy, inhibit the activation of the NLRP3 inflammasome, and attenuate the release of proinflammatory factors. The primary mechanism of AG promoting autophagy was to inhibit the activation of the PI3K/AKT/mTOR pathway by binding RAGE to the membrane. In addition, it inhibited the activation of the NLRP3 inflammasome to ameliorate SALI. Our findings suggest that AG promotes autophagy in AMs through the RAGE/PI3K/AKT/mTOR pathway to inhibit the activation of the NLRP3 inflammasome, remodel the functional homeostasis of AMs in SALI, and exert anti-inflammatory and lung-protective effects. It has also been the first to suggest that RAGE is likely a direct target through which AG regulates autophagy, providing theoretical support for a novel therapeutic strategy in sepsis.

6.
Angew Chem Int Ed Engl ; : e202411166, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008335

RESUMO

Molecular editing promises to facilitate the rapid diversification of complex molecular architectures by rapidly and conveniently altering core frameworks. This approach has the potential to accelerate both drug discovery and total synthesis. In this study, we present a novel protocol for the molecular editing of pyrroles. Initially, N-Boc pyrroles and alkynes are converted into N-bridged compounds through a Diels-Alder reaction. These compounds then undergo deprotection of the Boc group, nitrosylation, and cheletropic N2O extrusion to yield benzene or naphthalene products. By using benzyne as a substrate, this method can be conceptually viewed as a fusion of skeletal editing of the pyrrole ring and site-selective peripheral editing of the benzene ring. Furthermore, this proof-of-concept protocol has demonstrated its potential to transform the (hetero)arene motif from commercially available drugs, offering the possibility of generating new biologically active compounds.

7.
Expert Opin Ther Pat ; : 1-18, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39011556

RESUMO

INTRODUCTION: Cyclin-dependent protein kinase 4/6 (CDK4/6) is a class of serine/threonine protein kinases that plays a key role in the regulation of the cell cycle. CDK4/6 is highly expressed in cancers such as breast cancer, melanoma, and non-small cell lung cancer (NSCLC). Currently, a variety of CDK4/6 inhibitors have been developed, aiming to develop effective inhibitors to solve CDK4/6 resistance and toxicity. AREAS COVERED: This article searches patents through Espacenet and reviews the development of widely studied CDK inhibitors and FDA-approved CDK4/6 inhibitors, as well as the latest progress of patented inhibitors with good inhibitory activity against CDK4/6 from 2020 to now. EXPERT OPINION: CDK4/6 is highly expressed in many tumors and has become an important anti-tumor target. Among the patents from 2020 to the present, many inhibitors have good kinase inhibitory effects on CDK4/6 and also show great development potential in anti-tumor. However, there is still an urgent need to develop novel CDK4/6 inhibitors that address challenges such as drug resistance, toxicity, and selectivity.

8.
Sci Total Environ ; 944: 174002, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38879024

RESUMO

Forest soils play a critical role in carbon (C) reservoirs and climate change mitigation globally. Exploring the driving factors of soil organic carbon (SOC) concentration and stability in forests on a large spatial scale can help us evaluate the role of forest soils in regulating C sequestration. Based on SOC quantification and solid-state 13C nuclear magnetic resonance spectroscopy, we investigated the SOC concentration and SOC chemical stability (indicated by alkyl-to-O-alkyl ratio and hydrophobic-to-hydrophilic ratio) in top 0-5 and 5-10 cm soils from 65 Chinese natural forest sites and explored their driving factors. Results showed that SOC concentration in 0-5 cm soils were highest in mixed forests but SOC chemical stability in 0-5 cm soils were highest in coniferous forests, while SOC concentration and chemical stability in 5-10 cm soil layers did not differ across forest types. SOC concentration in 0-5 cm was directly related to soil pH and soil bacterial diversity. Structural equation models showed that aridity indirectly affected SOC concentration in 0-5 cm by directly affecting soil pH. While SOC chemical stability in 0-5 cm soils was higher with increased aridity. According to the correlations, the potential mechanisms could be attributed to higher proportion of coniferous forests in more arid forest sites, lower relative abundance of O-alkyl C, higher MgO and CaO contents, and higher bacterial diversity in soils from more arid forest sites. Our study reveals the important role of aridity in mediating SOC concentration and chemical stability in top 0-5 cm soils in Chinese natural forests on a large-scale field investigation. These results will help us better understand the different mechanisms underlying SOC concentration and stability in forests and assess the feedback of forest SOC to future climate change.


Assuntos
Carbono , Florestas , Solo , Solo/química , China , Carbono/análise , Mudança Climática , Sequestro de Carbono , Monitoramento Ambiental , População do Leste Asiático
9.
Artigo em Inglês | MEDLINE | ID: mdl-38870091

RESUMO

INTRODUCTION: Fine-needle aspiration (FNA) is no longer recommended for diagnosing infected pancreatic necrosis (IPN) due to a high false-negative rate. Metagenomic next-generation sequencing (mNGS) is a valuable tool for identifying potential pathogens. We hypothesized that adding mNGS to the standard FNA procedure may increase diagnostic accuracy. METHODS: This is a prospective, single-arm feasibility study enrolling patients with acute necrotizing pancreatitis complicated by suspected IPN. Computed tomography-guided FNA was performed immediately after enrollment, and the drainage samples were subjected to culture and mNGS assays simultaneously. Confirmatory IPN within the following week of the index FNA procedure was the reference standard. The diagnostic performance of FNA-mNGS and the impact of mNGS results on treatment were evaluated. Historical controls were used for comparison of clinical outcomes. RESULTS: There was no significant difference between mNGS and culture in the positive rate (75% vs 70%, P = 0.723). The accuracy of FNA-mNGS was 80.0%, with a sensitivity of 82.35%, specificity of 66.67%, positive predictive value of 93.3%, and negative predictive value of 40.0%. The results of the mNGS led to treatment change in 16 of 20 patients (80%), including implementing percutaneous catheter drainage (n = 7), expanding antibiotic coverage (n = 2), percutaneous catheter drainage and expanding coverage (n = 4), narrowing antibiotic coverage (n = 1), and discontinuation of antibiotics (n = 2). The FNA-mNGS approach was not associated with improved clinical outcomes compared with the historical control group. DISCUSSION: The addition of mNGS to standard FNA has comparable diagnostic accuracy with culture-based FNA and may not be associated with improved clinical outcomes.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38904628

RESUMO

Objective: This study aims to investigate the correlation between estrogen levels and psychological distress, focusing on depression and anxiety symptoms among patients diagnosed with uterine fibroids. Methods: The study employed a retrospective design and enrolled a cohort comprising 50 patients diagnosed with uterine fibroids and 50 healthy individuals as controls. Serum estradiol levels were quantified using a chemiluminescent immunoassay technique one month before surgery in the patient group. Depression and anxiety levels were evaluated using the Self-Rating Depression Scale (SDS) and the Self-Rating Anxiety Scale (SAS), respectively. Results: Significant differences in SDS scores, SAS scores, and serum estradiol levels emerged between the patient and control groups (P < .05). Patients exhibited higher SDS and SAS scores alongside elevated serum estradiol levels. Correlation analysis unveiled a negative association between SAS scores and estrogen levels among patients (r = -0.724, P = .013), suggesting a rise in anxiety levels with declining estrogen levels. Similarly, a negative correlation surfaced between SDS scores and estrogen levels among patients (r = -0.624, P = .016), indicating increased depressive symptoms as estrogen levels decrease. Conversely, no noteworthy correlations were demonstrated between anxiety or depressive symptoms and estrogen levels in the control group. Conclusion: Reduced estrogen levels were linked to heightened anxiety and depressive symptoms in patients with uterine fibroids. These findings suggest a plausible connection between estrogen hormone levels and psychological well-being, particularly concerning anxiety and depression. Further exploration of this association is warranted to shed light on potential therapeutic interventions targeting hormonal regulation to improve psychological distress in affected individuals.

12.
J Colloid Interface Sci ; 671: 46-55, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38788423

RESUMO

Efficient production of green hydrogen energy is crucial in addressing the energy crisis and environmental concerns. The oxygen evolution reaction (OER) poses a challenge in conventional overall water electrolysis due to its slow thermodynamically process. Urea oxidation reaction (UOR) offers an alternative anodic oxidation method that is highly efficient and cost-effective, with favorable thermodynamics and sustainability. Recently, there has been limited research on bifunctional catalysts that exhibit excellent activity for both OER and UOR reactions. In this study, we developed a selenium and iron co-doped nickel sulfide (SeFe-Ni3S2) catalyst that demonstrated excellent Tafel slopes of 53.9 mV dec-1 and 16.4 mV dec-1 for OER and UOR, respectively. Density Functional Theory (DFT) calculations revealed that the introduction of metal (iron) and nonmetallic elements (selenium) was found to coordinate the d-band center, resulting in improved adsorption/desorption energies of the catalysts and reduced the overpotentials and limiting potentials for OER and UOR, respectively. This activity enhancement can be attributed to the altered electronic coordination structure after the introduction of selenium (Se) and iron (Fe), leading to an increase in the intrinsic activity of the catalyst. This work offers a new strategy for bifunctional catalysts for OER and UOR, presenting new possibilities for the future development of hydrogen production and novel energy conversion technologies. It contributes towards the urgent search for technologies that efficiently produce green hydrogen energy, providing potential solutions to mitigate the energy crisis and protect the environment.

13.
ACS Appl Mater Interfaces ; 16(22): 28041-28055, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38767982

RESUMO

Bacterial infection poses a significant challenge to wound healing and skin regeneration, leading to substantial economic burdens on patients and society. Therefore, it is crucial to promptly explore and develop effective methodologies for bacterial infections. Herein, we propose a novel approach for synthesizing nanostructures based on antisense oligonucleotides (ASOs) through the coordination-driven self-assembly of Zn2+ with ASO molecules. This approach aims to provide effective synergistic therapy for chronic wound infections caused by Staphylococcus aureus (S. aureus). The resulting hybrid nanoparticles successfully preserve the structural integrity and biological functionalities of ASOs, demonstrating excellent ASO encapsulation efficiency and bioaccessibility. In vitro antibacterial experiments reveal that Zn-ASO NPs exhibit antimicrobial properties against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. This antibacterial ability is attributed to the high concentration of metal zinc ions and the generation of high levels of reactive oxygen species. Additionally, the ftsZ-ASO effectively inhibits the expression of the ftsZ gene, further enhancing the antimicrobial effect. In vivo antibacterial assays demonstrate that the Zn-ASO NPs promote optimal skin wound healing and exhibit favorable biocompatibility against S. aureus infections, resulting in a residual infected area of less than 8%. This combined antibacterial strategy, which integrates antisense gene therapy and metal-coordination-directed self-assembly, not only achieves synergistic and augmented antibacterial outcomes but also expands the horizons of ASO coordination chemistry. Moreover, it addresses the gap in the antimicrobial application of metal-coordination ASO self-assembly, thereby advancing the field of ASO-based therapeutic approaches.


Assuntos
Antibacterianos , Oligonucleotídeos Antissenso , Staphylococcus aureus , Zinco , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Zinco/química , Zinco/farmacologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Animais , Camundongos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Bacillus subtilis/efeitos dos fármacos , Humanos , Cicatrização/efeitos dos fármacos
14.
J Food Sci ; 89(7): 4535-4550, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38809252

RESUMO

Polysaccharides from natural sources can regulate the composition of intestinal flora through the "gut-liver axis" pathway, potentially ameliorating alcoholic liver injury. Aspalathus linearis, also known as rooibos, is one such natural product that has shown promise in this regard. This study looked at the structural properties of A. linearis polysaccharide (ALP) and how well it would work to treat acute alcoholic liver impairment. This study looks at the composition of monosaccharides, functional groups, and molecular weight (Mw) of a newly discovered water-soluble polysaccharide, named ALP. The polysaccharide is composed of pyranose rings, amide groups, and sulfate groups linked by ß-glycosidic linkage. It has a relative Mw of 4.30 × 103 kDa and is composed of glucose, rhamnose, and some other monosaccharides. The study found that treating mice with the model of acute alcoholic liver disease with ALP could alleviate pathological symptoms, inhibit the release of inflammatory cytokines, and suppress indicators of oxidative stress. Experiments have shown that different doses of ALP can activate the P4502E1/Keap1-Nrf2-HO-1 signaling pathway. The regulation of inflammatory factors and downstream antioxidant enzymes occurs as a result. Based on these data, it is likely that ALP protects the liver via the "gut-liver axis" pathway by reducing oxidative stress-related damage, inflammation, and alcohol-related alterations to the gut microbiome. The results indicate that ALP mitigates injury caused by oxidative stress, inflammatory responses, and changes in the gut microbiota induced by alcohol through the "gut-liver axis" pathway, which provides protection to the liver. This provides preliminary evidence for the development of related drugs. PRACTICAL APPLICATION: Researchers extracted a polysaccharide from fresh leaves of Auricularia auricula. The polysaccharide was purified and determined to have a predominantly homogeneous molecular weight. An acute alcoholic liver damage mouse model was established, and it was concluded that the polysaccharide could ameliorate liver injury in mice through the "gut-liver axis" pathway. This novel polysaccharide can be used as an additive to develop functional foods with beneficial effects, which can positively impact the daily maintenance of consumers.


Assuntos
Hepatopatias Alcoólicas , Estresse Oxidativo , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Hepatopatias Alcoólicas/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Antioxidantes/farmacologia , Peso Molecular , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Citocinas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Citocromo P-450 CYP2E1/metabolismo
15.
Endocrine ; 85(1): 313-320, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760615

RESUMO

OBJECTIVE: Teprotumumab plays an important role in thyroid eye disease pathogenesis and progression. We intend to mine the adverse event (AE) signals from a relevant database, thereby contributing to the safe use of teprotumumab. METHODS: The data obtained from the ASCII data packages in the FAERS database from January 2020 to the second quarter of 2023 were imported into the SAS software (version 9.4) for data cleaning and analysis. Disproportionality analysis was performed using the reporting odds ratio (ROR) in conjunction with the United Kingdom Medicines and Healthcare Products Regulatory Agency (MHRA) omnibus standard method to detect positive signals. PARTICIPANTS: This retrospective observational study relied on adverse drug reactions reported to the FDA through FAERS, which is a standard public system for spontaneous reporting. RESULTS: Collectively, 2171 AE reports for teprotumumab were collected, among which 108 significant signals were identified involving 17 system organ classes. The SOC of ear and labyrinth disorders included the most AE signals and reports. Muscle spasms, fatigue, headache, nausea, diarrhea, alopecia, blood glucose increased, hypoacusis, tinnitus, and diabetes mellitus were the top ten PTs ranked by the frequency of reporting, meanwhile, the two high-strength signals of thyroid-stimulating immunoglobulin increase (ROR 662.89, 95% CI 182.40-2409.19) and gingival recession (ROR 125.13, 95% CI 79.70-196.45) were not documented in the drug instruction. Meanwhile, we found a higher risk of increased blood glucose, deafness, and decreased appetite for male patients, and headache for female patients. CONCLUSIONS: Clinical application of teprotumumab should be closely monitored for ototoxicity, nail abnormalities, and menstrual changes, as well as for AEs not mentioned in the drug instruction, including gingival recession, thyroid-stimulating immunoglobulin increase, and so on.


Assuntos
Sistemas de Notificação de Reações Adversas a Medicamentos , Anticorpos Monoclonais Humanizados , Bases de Dados Factuais , Humanos , Masculino , Feminino , Estudos Retrospectivos , Sistemas de Notificação de Reações Adversas a Medicamentos/estatística & dados numéricos , Anticorpos Monoclonais Humanizados/efeitos adversos , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adulto , Idoso , Adulto Jovem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia
16.
Radiother Oncol ; 197: 110329, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768714

RESUMO

BACKGROUND: Chemoradiotherapy with high-dose cisplatin (HD-Cis: 100 mg/m2 q3w for three cycles) is the standard of care (SOC) in locally advanced head and neck squamous cell carcinoma (LA-HNSCC). Cumulative delivered dose of cisplatin is prognostic of survival, even beyond 200 mg/m2 but high toxicity compromises its delivery. AIM: Cisplatin fractionation may allow, by decreasing the peak serum concentration, to decrease toxicity. To date, no direct comparison was done of HD-Cis versus fractionated high dose cisplatin (FHD-Cis). METHODS: This is a multi-institutional randomized phase II trial, stratified on postoperative or definitive chemoradiotherapy, comparing HD-Cis to FHD-Cis (25 mg/m2/d d1-4 q3w for 3 cycles) in patients with LA-HNSCC. The primary endpoint was the cumulative delivered cisplatin dose. RESULTS: Between December 2015 and April 2018, 124 patients were randomized. Median cisplatin cumulative delivered dose was 291 mg/m2 (IQR: 251;298) in the FHD-Cis arm and 274 mg/m2 (IQR: 198;295) in the HD-Cis arm (P = 0.054). The proportion of patients receiving a third cycle of cisplatin was higher, with a lower proportion of grade 3-4 acute AEs in the FHD-Cis arm compared to the HD-Cis arm: 81 % vs. 64 % (P = 0.04) and 10 % vs. 17 % (P = 0.002), respectively. With a median follow-up of 48 months (IQR: 41;55), locoregional failure rate, PFS and OS were similar between the two arms. CONCLUSION: Although the primary endpoint was not met, FHD-Cis allowed more cycles of cisplatin to be delivered with lower toxicity, when compared to SOC. FHD-Cis concurrently with RT is a treatment option which deserves further consideration.


Assuntos
Quimiorradioterapia , Cisplatino , Fracionamento da Dose de Radiação , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Cisplatino/administração & dosagem , Masculino , Pessoa de Meia-Idade , Feminino , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Quimiorradioterapia/métodos , Idoso , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/administração & dosagem , Adulto
17.
Eur J Med Chem ; 273: 116470, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38762915

RESUMO

Cancer poses a significant threat to human health. Therefore, it is urgent to develop potent anti-cancer drugs with excellent inhibitory activity and no toxic side effects. Pyrrole and its derivatives are privileged heterocyclic compounds with significant diverse pharmacological effects. These compounds can target various aspects of cancer cells and have been applied in clinical settings or are undergoing clinical trials. As a result, pyrrole has emerged as a promising drug scaffold and has been further probed to get novel entities for the treatment of cancer. This article reviews recent research progress on anti-cancer drugs containing pyrrole. It focuses on the mechanism of action, biological activity, and structure-activity relationships of pyrrole derivatives, aiming to assist in designing and synthesizing innovative pyrrole-based anti-cancer compounds.


Assuntos
Antineoplásicos , Pirróis , Pirróis/química , Pirróis/farmacologia , Pirróis/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Proliferação de Células/efeitos dos fármacos , Animais
19.
EBioMedicine ; 104: 105162, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38810561

RESUMO

BACKGROUND: Finding the oncogene, which was able to inhibit tumor cells intrinsically and improve the immune answers, will be the future direction for renal cancer combined treatment. Following patient sample analysis and signaling pathway examination, we propose p21-activated kinase 4 (PAK4) as a potential target drug for kidney cancer. PAK4 exhibits high expression levels in patient samples and plays a regulatory role in the immune microenvironment. METHODS: Utilizing AI software for peptide drug design, we have engineered a specialized peptide proteolysis targeting chimera (PROTAC) drug with selectivity for PAK4. To address challenges related to drug delivery, we developed a nano-selenium delivery system for efficient transport of the peptide PROTAC drug, termed PpD (PAK4 peptide degrader). FINDINGS: We successfully designed a peptide PROTAC drug targeting PAK4. PpD effectively degraded PAK4 with high selectivity, avoiding interference with other homologous proteins. PpD significantly attenuated renal carcinoma proliferation in vitro and in vivo. Notably, PpD demonstrated a significant inhibitory effect on tumor proliferation in a fully immunocompetent mouse model, concomitantly enhancing the immune cell response. Moreover, PpD demonstrated promising tumor growth inhibitory effects in mini-PDX and PDO models, further underscoring its potential for clinical application. INTERPRETATION: This PAK4-targeting peptide PROTAC drug not only curtails renal cancer cell proliferation but also improves the immune microenvironment and enhances immune response. Our study paves the way for innovative targeted therapies in the management of renal cancer. FUNDING: This work is supported by Research grants from non-profit organizations, as stated in the Acknowledgments.


Assuntos
Proliferação de Células , Neoplasias Renais , Proteólise , Quinases Ativadas por p21 , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo , Humanos , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Proteólise/efeitos dos fármacos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Modelos Animais de Doenças , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
20.
Proteomics Clin Appl ; : e2300233, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726756

RESUMO

PURPOSE: This paper is to offer insights for designing research utilizing Olink technology to identify biomarkers and potential therapeutic targets for disease treatment. EXPERIMENTAL DESIGN: We discusses the application of Olink technology in oncology, cardiovascular, respiratory and immune-related diseases, and Outlines the advantages and limitations of Olink technology. RESULTS: Olink technology simplifies the search for therapeutic targets, advances proteomics research, reveals the pathogenesis of diseases, and ultimately helps patients develop precision treatments. CONCLUSIONS: Although proteomics technology has been rapidly developed in recent years, each method has its own disadvantages, so in the future research, more methods should be selected for combined application to verify each other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA