Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Chromatogr ; : e5892, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769722

RESUMO

A simple and sensitive LC-tandem mass spectrometry method was established and validated for the determination of schaftoside in rat plasma. After prepared by protein precipitation with acetonitrile, schaftoside and internal standard were separated on a Waters HSS T3 column using acetonitrile containing 0.1% formic acid and 0.1% formic acid in water as the mobile phase by gradient elution. The method showed excellent linearity over the range of 0.5-500 ng/mL with acceptable intra- and inter-day precision, accuracy, matrix effect, and recovery. The stability assay indicated that schaftoside was stable during the sample acquisition, preparation, and storage. The method was applied to a pharmacokinetic study of schaftoside in rats. The result suggested that after intravenous administration at a dose of 1 mg/kg, schaftoside was quickly eliminated from the plasma with an elimination half-life of 0.58 h. After oral administration at doses of 5, 10, and 20 mg/kg, schaftoside was quickly absorbed into the plasma and reached the peak concentration (Cmax) of 45.1-104.99 ng/mL at 0.67-1.17 h. The increase of exposure (area under the curve) was linear with the increase of dose. The oral bioavailability was 0.42%-0.71% in the range of 5-20 mg/kg.

2.
Acta Biomater ; 173: 247-260, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37939818

RESUMO

Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. To develop a vascular adventitial drug delivery system to treat intimal hyperplasia post vascular injuries, we loaded miR-145-5p-agomir (miR-145) into an injectable and in-situ self-assembling RAD peptide hydrogel. In vitro data showed that the miR-145 could be well incorporated into the RAD peptide hydrogels and released in a slow and controlled manner. The released miR-145 could transfect SMCs successfully, and the transfected SMCs exhibited a reduced migration capacity and higher expressions of SMC contractile biomarkers as compared to the non-transfected SMCs. In vivo data showed that the retention of the miR-145 was greatly elongated by the RAD peptide hydrogels. In addition, the application of the miR-145-loaded RAD peptide hydrogels surrounding injured arteries decreased the proliferative SMCs, promoted the regeneration of endothelium, reduced the macrophage infiltration, inhibited the neointimal formation and prevented adverse ECM remodeling via downregulation of KLF4 expression. The RAD peptide hydrogels loaded with miR-145 can successfully inhibit intimal hyperplasia after vascular injuries and thus hold great potential as an innovative extravascular drug delivery approach to treat vascular diseases. STATEMENT OF SIGNIFICANCE: Intimal hyperplasia is a common lesion that can be observed in diverse vascular diseases. Drug-eluting stents and drug-coated balloons, which can release anti-proliferative agents to inhibit smooth muscle cell (SMC) proliferation, are developed to prevent intimal hyperplasia. However, these intervention devices still cannot achieve satisfactory clinical outcomes. In contrast to endovascular drug delivery, vascular adventitial drug delivery is a new strategy. Our work here demonstrates that the RAD peptide hydrogels loaded with miR-145-5p-agomir (miR-145) can successfully reverse intimal hyperplasia after vascular injuries and thus hold great potential as an innovative vascular adventitial drug delivery approach to treat vascular diseases. Our work proposes a possible paradigm shift from endovascular drug delivery to extravascular drug delivery for vascular disorder treatment.


Assuntos
MicroRNAs , Lesões do Sistema Vascular , Humanos , Lesões do Sistema Vascular/terapia , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Hiperplasia/metabolismo , Hiperplasia/patologia , Músculo Liso Vascular/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Células Cultivadas
3.
Kidney Dis (Basel) ; 9(4): 239-253, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37900004

RESUMO

Background: Organ fibrosis remains an important cause of high incidence rate and mortality worldwide. The prominent role of interleukin-6 (IL-6) family members represented by IL-6 in inflammation has been extensively studied, and drugs targeting IL-6 have been used clinically. Because of the close relationship between inflammation and fibrosis, researches on the role of IL-6 family members in organ fibrosis are also gradually emerging. Summary: In this review, we systematically reviewed the role of IL-6 family members in fibrosis and their possible mechanisms. We listed the role of IL-6 family members in organ fibrosis and drew two diagrams to illustrate the downstream signal transductions of IL-6 family members. We also summarized the effect of some IL-6 family members' antagonists in a table. Key Messages: Fibrosis contributes to organ structure damage, organ dysfunction, and eventually organ failure. Although IL-6 family cytokines have similar downstream signal pathways, different members play various roles in an organ-specific manner which might be partly due to their different target cell populations. The pathogenic role of individual member in various diseases needs to be deciphered carefully.

4.
Biomater Res ; 27(1): 84, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667399

RESUMO

BACKGROUND: Bioresorbable stents are designed to provide temporary mechanical support to the coronary arteries and then slowly degrade in vivo to avoid chronic inflammation. Zinc (Zn) is a promising material for bioresorbable stents; However, it can cause inflammation and neointimal formation after being implanted into blood vessels. METHODS: To improve biocompatibility of Zn, we first coated it with polydopamine (PDA), followed by immobilization of endothelial vascular growth factor (VEGF) onto the PDA coatings. Adhesion, proliferation, and phenotype maintenance of endothelial cells (ECs) on the coated Zn were evaluated in vitro. Then, a wire aortic implantation model in rats mimicking endovascular stent implantation in humans was used to assess vascular responses to the coated Zn wires in vivo. Thrombosis in aortas post Zn wire implantation, degradation of Zn wires in vivo, neointimal formation surrounding Zn wires, and macrophage infiltration and extracellular matrix (ECM) remodeling in the neointimas were examined. RESULTS: In vitro data showed that the PDA-coated Zn encouraged EC adhesion, spreading, proliferation, and phenotype maintenance on its surfaces. VEGF functionalization on PDA coatings further enhanced the biocompatibility of Zn to ECs. Implantation of PDA-coated Zn wires into rat aortas didn't cause thrombosis and showed a faster blood flow than pure Zn or the Zn wires coated with VEGF alone. In addition, the PDA coating didn't affect the degradation of Zn wires in vivo. Besides, the PDA-coated Zn wires reduced neointimal formation, increased EC coverage, decreased macrophage infiltration, and declined aggrecan accumulation in ECM. VEGF immobilization onto PDA coatings didn't cause thrombosis and affect Zn degradation in vivo as well, and further increased the endothelization percentage as compared to PDA coating alone, thus resulting in thinner neointimas. CONCLUSION: These results indicate that PDA coatings with VEGF immobilization would be a promising approach to functionalize Zn surfaces to increase biocompatibility, reduce inflammation, and inhibit neointimal formation after Zn implantation in vivo.

5.
J Vis Exp ; (192)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912536

RESUMO

In recent decades, in addition to monolayer-cultured cells, three-dimensional tumor spheroids have been developed as a potentially powerful tool for the evaluation of anticancer drugs. However, the conventional culture methods lack the ability to manipulate the tumor spheroids in a homogeneous manner at the three-dimensional level. To address this limitation, in this paper, we present a convenient and effective method of constructing average-sized tumor spheroids. Additionally, we describe a method of image-based analysis using artificial intelligence-based analysis software that can scan the whole plate and obtain data on three-dimensional spheroids. Several parameters were studied. By using a standard method of tumor spheroid construction and a high-throughput imaging and analysis system, the effectiveness and accuracy of drug tests performed on three-dimensional spheroids can be dramatically increased.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Esferoides Celulares/patologia , Inteligência Artificial , Avaliação de Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
6.
EBioMedicine ; 86: 104312, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335669

RESUMO

BACKGROUND: The role of the IL6 family members in organ fibrosis, including renal interstitial fibrosis (TIF), has been widely explored. However, few studies have ever simultaneously examined them in the same cohort of patients. Besides, the role of leukemia inhibitory factor (LIF) in TIF remains unclear. METHODS: RNA-seq data of kidney biopsies from chronic kidney disease (CKD) patients, in both public databases and our assays, were used to analyze transcript levels of IL6 family members. Two TIF mouse models, the unilateral ureteral obstruction (UUO) and the ischemia reperfusion injury (IRI), were employed to validate the finding. To assess the role of LIF in vivo, short hairpin RNA, lenti-GFP-LIF was used to knockdown LIF receptor (LIFR), overexpress LIF, respectively. LIF-neutralizing antibody was used in therapeutic studies. Whether urinary LIF could be used as a promising predictor for CKD progression was investigated in a prospective observation patient cohort. FINDINGS: Among IL6 family members, LIF is the most upregulated one in both human and mouse renal fibrotic lesions. The mRNA level of LIF negatively correlated with eGFR with the strongest correlation and the smallest P value. Baseline urinary concentrations of LIF in CKD patients predict the risk of CKD progression to end-stage kidney disease by Kaplan-Meier analysis. In mouse TIF models, knockdown of LIFR alleviated TIF; conversely, overexpressing LIF exacerbated TIF. Most encouragingly, visible efficacy against TIF was observed by administering LIF-neutralizing antibodies to mice. Mechanistically, LIF-LIFR-EGR1 axis and Sonic Hedgehog signaling formed a vicious cycle between fibroblasts and proximal tubular cells to augment LIF expression and promote the pro-fibrotic response via ERK and STAT3 activation. INTERPRETATION: This study discovered that LIF is a noninvasive biomarker for the progression of CKD and a potential therapeutic target of TIF. FUNDINGS: Stated in the Acknowledgements section of the manuscript.


Assuntos
Rim , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Fator Inibidor de Leucemia/genética , Rim/metabolismo , Interleucina-6/genética , Estudos Prospectivos , Proteínas Hedgehog , Fibrose , Insuficiência Renal Crônica/patologia
7.
Front Bioeng Biotechnol ; 10: 900481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35497341

RESUMO

Organ-on-a-chip (OoC) is a new and promising technology, which aims to improve the efficiency of drug development and realize personalized medicine by simulating in vivo environment in vitro. Physiologically based pharmacokinetic (PBPK) modeling is believed to have the advantage of better reflecting the absorption, distribution, metabolism and excretion process of drugs in vivo than traditional compartmental or non-compartmental pharmacokinetic models. The combination of PBPK modeling and organ-on-a-chip is believed to provide a strong new tool for new drug development and have the potential to replace animal testing. This article provides the recent development of organ-on-a-chip technology and PBPK modeling including model construction, parameter estimation and validation strategies. Application of PBPK modeling on Organ-on-a-Chip (OoC) has been emphasized, and considerable progress has been made. PBPK modeling on OoC would become an essential part of new drug development, personalized medicine and other fields.

8.
J Healthc Eng ; 2021: 5763177, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777735

RESUMO

Segmentation of pulmonary vessels in CT/CTA images can help physicians better determine the patient's condition and treatment. However, due to the complexity of CT images, existing methods have limitations in the segmentation of pulmonary vessels. In this paper, a method based on the separation of pulmonary vessels in CT/CTA images is investigated. The method is divided into two steps: in the first step, the lung parenchyma is extracted using the Unet++ algorithm, which can effectively reduce the oversegmentation rate; in the second step, the pulmonary vessels in the lung parenchyma are extracted using nnUnet. According to the obtained lung parenchyma segmentation results, the "AND" operation is performed on the original image and the lung parenchyma segmentation results, and only the blood vessels within the lung parenchyma are segmented, which reduces the interference of external tissues and improves the segmentation accuracy. The experimental data source used CT/CTA images acquired from the partner hospital. After the experiments were performed on a total of 67 sets of images, the accuracy of CT and CTA images reached 85.1% and 87.7%, respectively. The comparison of whether to segment the lung parenchyma and with other conventional methods was also performed, and the experimental results showed that the algorithm in this paper has high accuracy.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Pulmão/diagnóstico por imagem
9.
J Biomed Nanotechnol ; 17(6): 1079-1087, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34167622

RESUMO

Matrix nanotopography plays an essential role in regulating cell behaviors including cell proliferation, differentiation, and migration. While studies on isolated single cell migration along the nanostructural orientation have been reported for various cell types, there remains a lack of understanding of how nanotopography regulates the behavior of collectively migrating cells during processes such as epithelial wound healing. We demonstrated that collective migration of epithelial cells was promoted on nanogratings perpendicular to, but not on those parallel to, the wound-healing axis. We further discovered that nanograting-modulated epithelial migration was dominated by the adhesion turnover process, which was Rho-associated protein kinase activity-dependent, and the lamellipodia protrusion at the cell leading edge, which was Rac1-GTPase activity-dependent. This work provides explanations to the distinct migration behavior of epithelial cells on nanogratings, and indicates that the effect of nanotopographic modulations on cell migration is cell-type dependent and involves complex mechanisms.


Assuntos
Células Epiteliais , Cicatrização , Diferenciação Celular , Movimento Celular , Proliferação de Células
10.
Antioxid Redox Signal ; 30(15): 1797-1816, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29890853

RESUMO

AIMS: Mitochondrial fragmentation is a crucial mechanism contributing to tubular cell apoptosis during acute kidney injury (AKI). However, the mechanism of modulating mitochondrial dynamics during AKI remains unclear. Numb is a multifunction adaptor protein that is expressed in renal tubules. The aim of the present study was to evaluate the role of Numb in mitochondrial dysfunction during AKI. RESULTS: The expression of Numb was upregulated in both ischemia-reperfusion- and cisplatin-induced AKI. Depletion of Numb from proximal tubules (PT-Nb-KO) exacerbated AKI shown as more severe renal tubular damage and higher serum creatinine than wild-type mice. Numb depletion alone significantly increased mitochondrial fragmentation without altering mitochondrial mass and function, including adenosine triphosphate production, mitochondrial membrane potential, oxygen consumption, and reactive oxygen species production. However, mitochondrial fragmentation and dysfunction were significantly aggravated after cisplatin exposure in PT-Nb-KO mice. Mechanistically, Numb depletion triggered dynamin-related protein 1 (Drp1) recruitment to mitochondria by increasing the phosphorylation of Drp1 at serine 656 residue (human Drp1 ser637). Inhibiting the activity of Rho-associated coiled-coil containing protein kinase (ROCK) by Y-27632 attenuated phosphorylation of Drp1 ser656 and mitochondrial fragmentation in Numb-deficient cells. Administration of mdivi-1, a pharmacological inhibitor of Drp1, restored mitochondrial morphology, attenuated cisplatin-induced tubular injury, and renal dysfunction in PT-Nb-KO mice. Innovation and Conclusion: Our data suggest that Numb depletion promotes mitochondrial fragmentation by promoting the phosphorylation of Drp1 Ser637 and thus exacerbates cisplatin-induced mitochondrial dysfunction and tubular cell apoptosis. These findings add a novel insight into modulating mechanism of mitochondrial dynamics during AKI.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Suscetibilidade a Doenças , Proteínas de Membrana/metabolismo , Dinâmica Mitocondrial/genética , Proteínas do Tecido Nervoso/metabolismo , Injúria Renal Aguda/patologia , Animais , Apoptose , Biomarcadores , Biópsia , Cisplatino/efeitos adversos , Proteínas Quinases Associadas com Morte Celular/metabolismo , Progressão da Doença , Técnicas de Silenciamento de Genes , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Proteínas de Membrana/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Radiação Ionizante , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
12.
Microbiology (Reading) ; 162(4): 672-683, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26860640

RESUMO

A Myxococcus xanthus gene, MXAN3487, was identified by transposon mutagenesis to be required for the expression of mcuABC, an operon coding for part of the chaperone-usher (CU) system in this bacterium. The MXAN3487 protein displays sequence and structural homology to adenosine 5'-phosphosulphate (APS) kinase family members and contains putative motifs for ATP and APS binding. Although the MXAN3487 locus is not linked to other sulphate assimilation genes, its protein product may have APS kinase activity in vivo and the importance of the ATP-binding site for activity was demonstrated. Expression of MXAN3487 was not affected by sulphate availability, suggesting that MXAN3487 may not function in a reductive sulphate assimilation pathway. Deletion of MXAN3487 significantly delayed fruiting body formation and the production of McuA, a spore coat protein secreted by the M. xanthus Mcu CU system. Based on these observations and data from our previous studies, we propose that MXAN3487 may phosphorylate molecules structurally related to APS, generating metabolites necessary for M. xanthus development, and that MXAN3487 exerts a positive effect on the mcuABC operon whose expression is morphogenesis dependent.


Assuntos
Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/enzimologia , Myxococcus xanthus/crescimento & desenvolvimento , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Adenosina Fosfossulfato/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Mutagênese Insercional , Ligação Proteica
13.
J Ethnopharmacol ; 165: 9-19, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25704929

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood". The modified "Shengyu" decoction (MSD) used in the present study was designed to treat traumatic brain injury (TBI) on the basis of the "Shengyu" decoction, in which additional four herbs were added. Many ingredients in these herbs have been demonstrated to be effective for the treatment of brain injury. The present study was performed to evaluate the neurorestorative effect and the underlying mechanisms of MSD on the rat brain after a TBI. MATERIALS AND METHODS: TBI was induced in the right cerebral cortex of adult rats using Feeney's weight-drop method. Intragastrical administration of MSD (1.0 ml/200 g) was begun 6h after TBI. The neurological functions and neuronal loss in the cortex and hippocampus were determined. The levels of nerve growth-related factors GDNF, NGF, NCAM, TN-C, and Nogo-A and the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+) immunoreactive cells in the brain ipsilateral to TBI were also measured. Moreover, the influences of MSD on these variables were observed at the same time. RESULTS: We found that treatment with MSD in TBI rats ameliorated the neurological functions and alleviated neuronal loss. MSD treatment elevated the expression of GDNF, NGF, NCAM, and TN-C, and inhibited the expression of Nogo-A. Moreover, MSD treatment increased the number of GFAP(+)/GDNF(+), BrdU(+)/nestin(+), and BrdU(+)/NeuN(+) immunoreactive cells in the cortex and hippocampus. CONCLUSION: The present results suggest that MSD treatment in TBI rats could improve the proliferation of neural stem/progenitor cells and differentiation into neurons, which may facilitate neural regeneration and tissue repair and thus contribute to the recovery of neurological functions. These effects of modified "Shengyu" decoction may provide a foundation for the use of MSD as a prescription of medicinal herbs in the traditional medicine to treat brain injuries in order to improve the neurorestoration.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa/métodos , Células-Tronco Neurais/efeitos dos fármacos , Animais , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/lesões , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Masculino , Regeneração Nervosa/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
14.
Ecotoxicology ; 24(4): 835-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25678231

RESUMO

A better understanding on the mechanism involved in bacterial resistance to combined exposure to antibiotics and heavy metals is helpful in implementing practices to mitigate their ecological risk and spread of resistance genes in microbial population. Pseudomonas fluorescens ZY2, a strain isolated from swine wastewater, was chosen to study its growth (bacterial density OD600), the formation of reactive oxygen species (ROS), nitric oxide (NO) and NO synthases (NOS) under Zn, cefradine or Zn + cefradine treatments. Using Zn and cefradine as representative heavy metal and antibiotic in this investigation, respectively, the resistance of P. fluorescens ZY2 to toxic chemical exposure was investigated. Bacterial densities of treatment groups significantly increased over the time of incubation, but less than the control. ROS, NO and NOS initially increased, but then decreased after the initial 8 h of culturing, and were positively related to Zn concentrations. Moreover, the formation of ROS, NOS, and NO was activated by cefradine at Zn of up to 160 mg/L, but inhibited at Zn of 200 mg/L whether cefradine was added or not. Zn concentration affected ROS and NO concentrations between treatments and also was closely related to the variation of the relative bacterial density. For P. fluorescens ZY2, the mediation of endogenous NO to overcome ROS in response to the combined exposure of Zn and cefradine was suggested as a co-resistance mechanism, which would be beneficial to evaluate the ecological risk of heavy metals and antibiotics.


Assuntos
Antibacterianos/farmacologia , Cefradina/farmacologia , Pseudomonas fluorescens/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Zinco/farmacologia , Animais , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Pseudomonas fluorescens/enzimologia , Pseudomonas fluorescens/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sus scrofa , Águas Residuárias/análise
15.
Int J Mol Sci ; 16(2): 2839-50, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25633105

RESUMO

A Pseudomonas fluorescens strain ZY2, isolated from swine wastewater, was used to investigate the synergistic effects of five heavy metals (Pb, Cu, Zn, Cr(VI) and Hg) on bacterial resistance to antibiotics. Results indicate that the combined effects of antibiotic type, heavy metal type and concentration were significant (p < 0.01). Cross-resistance to Hg and antibiotics was the most noticeable. Moreover, the resistance to Hg and cefradine or amoxicillin, and Cr and amoxicillin were synergistic for low heavy metal concentrations, and turned antagonistic with increasing concentrations, while the resistances to Cr or Cu and cefradine, Pb or Cu and amoxicillin, Cu and norfloxacin showed reverse effects. In addition, resistance to Zn and amoxicillin were always synergetic, while resistance to Pb and cefradine or norfloxacin, Cr or Hg and norfloxacin as well as all the heavy metals and tetracycline were antagonistic. These results indicate that bacterial resistance to antibiotics can be affected by the type and concentration of co-exposed heavy metals and may further threaten people's health and ecological security severely via horizontal gene transfer.


Assuntos
Antibacterianos/farmacologia , Metais Pesados/toxicidade , Pseudomonas fluorescens/efeitos dos fármacos , Águas Residuárias/microbiologia , Amoxicilina/farmacologia , Animais , Cefradina/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Norfloxacino/farmacologia , Pseudomonas fluorescens/isolamento & purificação , Suínos
16.
J Bacteriol ; 197(7): 1185-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605309

RESUMO

UNLABELLED: Gene clusters coding for the chaperone/usher (CU) pathway are widely distributed in many important environmental and pathogenic microbes; however, information about the regulatory machineries controlling CU gene expression during multicellular morphogenesis is missing. The Myxococcus xanthus Mcu system, encoded by the mcuABCD gene cluster, represents a prototype of the archaic CU family that functions in spore coat formation. Using genome-wide transposon mutagenesis, we identified MXAN2872 to be a potential regulator of the mcuABC operon and demonstrated the necessity of MXAN2872 for mcuABC expression and fruiting body morphogenesis in early development. In silico, biochemical, and genetic analyses suggest that MXAN2872 encodes a Baeyer-Villiger monooxygenase (BVMO) of flavoproteins, and the potential cofactor-binding site as well as the BVMO fingerprint sequence is important for the regulatory role of the MXAN2872 protein. The expression profile of mcuA in strains with an MXAN2872 deletion and point mutation agrees well with the timing of cell aggregation of these mutants. Furthermore, McuA could not be detected either in a fruA-null mutant, where starvation-induced aggregation was completely blocked, or in the glycerol-induced spores, where sporulation was uncoupled from cell aggregation. In sum, the present work uncovers a positive role for MXAN2872, a metabolic enzyme-encoding gene, in controlling M. xanthus development. MXAN2872 functions by affecting the onset of cell aggregation, thereby leading to a secondary effect on the timing of mcuABC expression of this model organism. IMPORTANCE: Identification of the players that drive Myxococcus xanthus fruiting body formation is necessary for studying the mechanism of multicellular morphogenesis in this model organism. This study identifies MXAN2872, a gene encoding a putative flavin adenine dinucleotide-binding monooxygenase, to be a new interesting regulator regulating the timing of developmental aggregation. In addition, MXAN2872 seems to affect the expression of the chaperone/usher gene cluster mcu in a manner that is aggregation dependent. Thus, in organisms characterized by a developmental cycle, expression of the chaperone/usher pathway can be controlled by morphological checkpoints, demonstrating another layer of complexity in the regulation of this conserved protein secretion pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Oxigenases de Função Mista/metabolismo , Myxococcus xanthus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Oxigenases de Função Mista/genética , Dados de Sequência Molecular , Myxococcus xanthus/metabolismo
17.
Microbiology (Reading) ; 160(Pt 10): 2200-2207, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25035068

RESUMO

Subunit-subunit interactions of the classical and alternate chaperone-usher (CU) systems have been shown to proceed through a donor strand exchange (DSE) mechanism. However, it is not known whether DSE is required for intersubunit interactions in the archaic CU system. We have previously shown that the Myxococcus xanthus Mcu system, a member of the archaic CU family that functions in spore coat formation, is likely to use the principle of donor strand complementation to medicate chaperone-subunit interactions analogous to the classical CU pathway. Here we describe the results of studies on Mcu subunit-subunit interactions. We constructed a series of N-terminal-deleted, single amino acid-mutated and donor strand-complemented Mcu subunits, and characterized their abilities to participate in subunit-subunit interactions. It appears that certain residues in both the N and C termini of McuA, a subunit of the Mcu system, play a critical role in intersubunit interactions and these interactions may involve the general principle of DSE of the classical and alternate CU systems. In addition, the specificity of the M. xanthus CU system for Mcu subunits over other spore coat proteins is demonstrated.


Assuntos
Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Myxococcus xanthus/enzimologia , Myxococcus xanthus/genética , Multimerização Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Análise Mutacional de DNA , Mutação Puntual , Ligação Proteica , Mapeamento de Interação de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Deleção de Sequência , Esporos Bacterianos
18.
J Ethnopharmacol ; 151(1): 694-703, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24296086

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: "Shengyu" decoction, a traditional Chinese medicine, has been used to treat diseases with deficit in "qi" and "blood" induced frequently by profound loss of blood or by long sores with heavy pus, in which a potential anti-inflammatory effect is implied. The modified "Shengyu" decoction (MSD) used in the present study was designed on the basis of the "Shengyu" decoction, additional four herbs were added in. Many ingredients in these herbs have been demonstrated to be anti-inflammatory and thus MSD may be used for the treatment of traumatic brain injury (TBI). To evaluate the neuroprotective effect and the underlying mechanisms of MSD on the rat brain after TBI. MATERIALS AND METHODS: TBI was induced in the right cerebral cortex of male adult rats using Feeney's weight-drop method. The rats were administered a gavage of MSD (0.5, 1.0 or 2.0 ml/200 g) 6h after TBI. The neurological functions, brain water content, contusion volume, and neuron loss were determined. The levels of TNF-α, IL-1ß, IL-6, and IL-10 and the number of GFAP- and Iba1-positive cells in the brain ipsilateral to TBI were also measured. Moreover, the influence of MSD on these variables was observed at the same time. RESULTS: The neurological deficits, brain water content, and neuron loss were significantly reduced after 1.0 or 2.0 ml/200 g of MSD treatment but not after 0.5 ml/200 g. In addition, treatment with MSD (1.0 ml/200 g) significantly increased the level of IL-10 and reduced the level of TNF-α and IL-1ß and the number of GFAP- and Iba1-positive cells after TBI. However, the contusion volume of brain tissue and the expression of IL-6 were not significantly changed. CONCLUSION: MSD may be a potential therapeutic for the treatment of TBI because MSD alleviated secondary brain injury induced by TBI. In addition, MSD inhibited the inflammatory response through reducing the expression of inflammatory cytokines and the activation of microglial cells and astrocytes in the brain tissue of rats after TBI. Therefore, a potential anti-inflammatory mechanism of the "Shengyu" decoction was confirmed, which may be one of the main reasons of "Shengyu" decoction used to treat diseases with obvious inflammatory responses.


Assuntos
Anti-Inflamatórios/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Química Encefálica , Ensaio de Imunoadsorção Enzimática , Masculino , Fármacos Neuroprotetores , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...