Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-12, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946552

RESUMO

To improve the homogeneity of heating, the magnetic absorbing material Fe3O4 is considered to use in microwave pyrolysis of oily sludge. Therefore, the effect of Fe3O4 on the microwave pyrolysis of oily sludge is investigated based on gas volatile products. Thermogravimetric mass spectrometry result certifies that Fe3O4 will increase the weight-loss ratio from 13.0% to 14.1%. Also, the characteristic peak intensity of CO in gas products decreases from 5.41 × 10-10 A/g to 1.95 × 10-10 A/g, while H2O increases from 3.57 × 10-10 A/g to 7.32 × 10-10 A/g and CO2 increases from 6.87 × 10-10 A/g to 8.92 × 10-10 A/g. This is caused by the esterification of alcohols and esters and the reduction of Fe3O4 by CO. Based on the decrease in activation energy and enthalpy values of Stage II and IV, it infers that Fe3O4 catalyzes the pyrolysis process of oily sludge to some extent. Similarly, gas chromatography-mass spectrometry results show that Fe3O4 can make the types of gas products increase. Especially, the number of molecular species increases from 5 to 46 under 200-300 °C. Finally, a simple molecular dynamics simulation model is conducted, and the results are in agreement with the experimental results. This study shows that Fe3O4 improves the pyrolysis homogeneity and the pyrolysis efficiency also improves.

2.
RSC Adv ; 8(18): 9754-9761, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35540829

RESUMO

This work investigates the evolution of micro/meso pores during a mild thermal treatment of subbituminous coal based on the observation of coal structure changes with the gradual detachment of organic matter from the coal. Pores in coal can be described as super-micropores (d < 1 nm), micropores (1 nm < d < 2 nm) and mesopores (2 nm < d < 50 nm). The decomposition of the carboxyl group at 200 °C decreases the super-micropore volume. A mild and sustained reaction takes place at 300 °C to gradually change the aromaticity and CH2/CH3 ratio of the treated coal. The amount of micropore structure sharply decreases in the early stages of heating, while the amount of mesopore structure continuously decreases during the whole process. A dramatic reaction takes place at 400 °C to sharply change the aromaticity and CH2/CH3 ratio of the treated coal, while the detachment of volatile compounds from the coal matrix caused an evident variation in the mesopore structure of the coal. The aromaticity and CH2/CH3 ratio of coal organics are found to correlate with the volumes of super-micropores and mesopores, respectively. The super-micropores are identified as comprising the inter-layer distance between stacks of aromatic rings, and mesopores are the spaces between macromolecular aromatic rings which are inter-connected via aliphatic chains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...