Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Front Genet ; 15: 1378403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628576

RESUMO

Lagerstroemia indica is an important commercial tree known for the ornamental value. In this study, the complete chloroplast genome sequence of Lagerstroemia indica "Pink Velour" (Lagerstroemia "Pink Velour") was 152,174 bp in length with a GC content of 39.50%. It contained 85 protein coding genes (PCGs), 37 tRNAs, and 8 rRNA genes. 207 simple sequence repeats (SSRs) and 31 codons with relative synonymous codon (RSCU)value > 1 were detected. Phylogenetic analysis divided 10 Lagerstroemia species into evolutionary branches of clade A and clade B. We conducted a comparative analysis of Lagerstroemia "Pink Velours" complete chloroplast genome with the genomes of six closely related Lagerstroemia species from different origins. The structural features of all seven species were similar, except for the deletion of ycf1 nucleobases at the JSA boundary. The large single-copy (LSC) and the small single-copy (SSC) had a higher sequence divergence than the IR region, and 8 genes that were highly divergent (trnK-UUU, petN, psbF, psbJ, ndhE, ndhD, ndhI, ycf1) had been identified and could be used as molecular markers in future studies. High nucleotide diversity was present in genes belonging to the photosynthesis category. Mutation of single nucleic acid was mainly influenced by codon usage. The value percentage of nonsynonymous substitutions (Ka) and synonymous substitutions (Ks) in 6 Lagerstroemia species revealed that more photosynthesis genes have Ka or Ks only in Lagerstroemia fauriei, Lagerstroemia limii, and Lagerstroemia subcostata. These advances will facilitate the breeding of closely related Lagerstroemia species and deepen understanding on climatic adaptation of Lagerstroemia plants.

2.
Anal Chem ; 96(18): 7130-7137, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38679866

RESUMO

Derived from camelid heavy-chain antibodies, nanobodies (Nbs) are the smallest natural antibodies and are an ideal tool in biological studies because of their simple structure, high yield, and low cost. Nbs possess significant potential for developing highly specific and user-friendly diagnostic assays. Despite offering considerable advantages in detection applications, knowledge is limited regarding the exclusive use of Nbs in lateral flow immunoassay (LFIA) detection. Herein, we present a novel double "Y" architecture, achieved by using the SpyTag/SpyCatcher and Im7/CL7 systems. The double "Y" assemblies exhibited a significantly higher affinity for their epitopes, as particularly evident in the reduced dissociation rate. An LFIA employing double "Y" assemblies was effectively used to detect the severe acute respiratory syndrome coronavirus-2 N protein, with a detection limit of at least 500 pg/mL. This study helps broaden the array of tools available for the development of Nb-based diagnostic techniques.


Assuntos
SARS-CoV-2 , Anticorpos de Domínio Único , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Imunoensaio/métodos , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Limite de Detecção , Humanos , COVID-19/diagnóstico , COVID-19/virologia , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise
3.
BMC Musculoskelet Disord ; 25(1): 70, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233913

RESUMO

BACKGROUND: Researches have used intra-compartmental infusion and ballon tourniquest to create high intra-compartmental pressure in animal models of Acute Compartment Syndrome (ACS). However, due to the large differences in the modeling methods and the evaluation criteria of ACS, further researches of its pathophysiology and pathogenesis are hindered. Currently, there is no ideal animal model for ACS and this study aimed to establish a reproducible, clinically relevant animal model. METHODS: Blunt trauma and fracture were caused by the free falling of weights (0.5 kg, 1 kg, 2 kg) from a height of 40 cm onto the lower legs of rats, and the application of pressures of 100 mmHg, 200 mmHg, 300 mmHg and 400 mmHg to the lower limbs of rats using a modified pressurizing device for 6 h. The intra-compartmental pressure (ICP) and the pressure change (ΔP) of rats with single and combined injury were continuously recorded, and the pathophysiology of the rats was assessed based on serum biochemistry, histological and hemodynamic changes. RESULTS: The ΔP caused by single injury method of different weights falling onto the lower leg did not meet the diagnosis criteria for ACS (< 30 mmHg). On the other hand, a combined injury method of a falling weight of 1.0 kg and the use of a pressurizing device with pressure of 300 mmHg or 400 mmHg for 6 h resulted in the desired ACS diagnosis criteria with a ΔP value of less than 30 mmHg. The serum analytes, histological damage score, and fibrosis level of the combined injury group were significantly increased compared with control group, while the blood flow was significantly decreased compared with control group. CONCLUSION: We successfully established a new preclinical ACS-like rat model, by the compression of the lower leg of rats with 300 mmHg pressure for 6 h and blunt trauma by 1.0 kg weight falling.


Assuntos
Síndromes Compartimentais , Fraturas Ósseas , Ferimentos não Penetrantes , Ratos , Animais , Síndromes Compartimentais/diagnóstico , Extremidade Inferior/lesões , Pressão , Fraturas Ósseas/complicações , Ferimentos não Penetrantes/complicações
4.
Hortic Res ; 11(1): uhad254, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38274648

RESUMO

Gray mold caused by Botrytis cinerea is one of the major threats in lily production. However, limited information is available about the underlying defense mechanism against B. cinerea in lily. Here, we characterized a nuclear-localized class A heat stress transcription factor (HSF)-LlHSFA4 from lily (Lilium longiflorum), which positively regulated the response to B. cinerea infection. LlHSFA4 transcript and its promoter activity were increased by B. cinerea infection in lily, indicating its involvement in the response to B. cinerea. Virus-induced gene silencing (VIGS) of LlHSFA4 impaired the resistance of lily to B. cinerea. Consistent with its role in lily, overexpression of LlHSFA4 in Arabidopsis (Arabidopsis thaliana) enhanced the resistance of transgenic Arabidopsis to B. cinerea infection. Further analysis showed that LlWRKY33 directly activated LlHSFA4 expression. We also found that both LlHSFA4 and LlWRKY33 positively regulated plant response to B. cinerea through reducing cell death and H2O2 accumulation and activating the expression of the reactive oxygen species (ROS) scavenging enzyme gene LlCAT2 (Catalase 2) by binding its prompter, which might contribute to reducing H2O2 accumulation in the infected area. Taken together, our data suggested that there may be a LlWRKY33-LlHSFA4-LlCAT2 regulatory module which confers B. cinerea resistance via reducing cell death and the ROS accumulation.

5.
New Phytol ; 241(5): 2124-2142, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185817

RESUMO

Heat stress transcription factors (HSFs) are core regulators of plant heat stress response. Much research has focused on class A and B HSFs, leaving those of class C relatively understudied. Here, we reported a lily (Lilium longiflorum) heat-inducible HSFC2 homology involved in thermotolerance. LlHSFC2 was located in the nucleus and cytoplasm and exhibited a repression ability by binding heat stress element. Overexpression of LlHSFC2 in Arabidopsis, tobacco (Nicotiana benthamiana), and lily, all increased the thermotolerance. Conversely, silencing of LlHSFC2 in lily reduced its thermotolerance. LlHSFC2 could interact with itself, or interact with LlHSFA1, LlHSFA2, LlHSFA3A, and LlHSFA3B of lily, AtHSFA1e and AtHSFA2 of Arabidopsis, and NbHSFA2 of tobacco. LlHSFC2 interacted with HSFAs to accelerate their transactivation ability and act as a transcriptional coactivator. Notably, compared with the separate LlHSFA3A overexpression, co-overexpression of LlHSFC2/LlHSFA3A further enhanced thermotolerance of transgenic plants. In addition, after suffering HS, the homologous interaction of LlHSFC2 was repressed, but its heterologous interaction with the heat-inducible HSFAs was promoted, enabling it to exert its co-activation effect for thermotolerance establishment and maintenance. Taken together, we identified that LlHSFC2 plays an active role in the general balance and maintenance of heat stress response by cooperating with HSFAs, and provided an important candidate for the enhanced thermotolerance breeding of crops and horticulture plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lilium , Termotolerância , Lilium/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Resposta ao Choque Térmico , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
6.
Mol Genet Genomics ; 298(6): 1545-1557, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910265

RESUMO

Petal spots are widespread in plants, they are important for attracting pollinators and as economic traits in crop breeding. However, the genetic and developmental control of petal spots has seldom been investigated. To further clarify the development of petal spots formation, we performed comparative transcriptome analysis of Lilium davidii var. unicolor and Lilium davidii petals at the full-bloom stage. In comparison with the parental species L. davidii, petals of the lily variety L. davidii var. unicolor do not have the distinct anthocyanin spots. We show that among 7846 differentially expressed genes detected, LdMYB12 was identified as a candidate gene contributing to spot formation in lily petals. The expression level of LdMYB12 in the petals of L. davidii was higher than that in L. davidii var. unicolor petals. Moreover, overexpression of LdMYB12 led to the appearance of spots on the petals of L. davidii var. unicolor, accompanied by increased expression of anthocyanin synthesis-related genes. Taken together, these results indicate that abnormal expression of LdMYB12 contributes to petal spot deficiency in L. davidii var. unicolor.


Assuntos
Lilium , Lilium/genética , Lilium/metabolismo , Antocianinas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma/genética
7.
Chin Med ; 18(1): 120, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730607

RESUMO

BACKGROUND: Myocardial ischemia/reperfusion injury (MI/RI) is involved in a variety of pathological states for which there is no effective treatment exists. Shuangshen Ningxin (SSNX) capsule which is developed by Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine has been demonstrated to alleviate MI/RI, but its mechanism remains to be further elucidated. METHODS: The MI/RI miniature pigs model was constructed to assess the pharmacodynamics of SSNX by blocking the proximal blood flow of the left anterior descending branch of the cardiac coronary artery through an interventional balloon. The principal chemical compounds and potential targets of SSNX were screened by HPLC-MS and SwissTargetPrediction. The targets of MI/RI were identified based on Online Mendelian Inheritance in Man (OMIM) and GeneCards. Cytoscape 3.9.0 was applied to construct a protein-protein interaction (PPI) network, and Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using metascape. To further validate the mechanism of SSNX, Molecular docking, Transmission electron microscopy, and Western blot analysis were used to test the effectiveness of targets in related pathways. RESULTS: Our results indicated that SSNX significantly improved cardiac function, attenuated myocardial I/R injury. Through network analysis, a total of 15 active components and 201 targets were obtained from SSNX, 75 of which are potential targets for the treatment of MI/RI. KEGG and MCODE analysis showed that SSNX is involved in the mitophagy signaling pathway, and ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Rb2 are key components associated with the mitophagy. Further experimental results proved that SSNX protected mitochondrial structure and function, and significantly reduced the expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1), Parkin, FUN14 domain containing 1 (FUNDC1) and Bcl-2/E1B-19 kDa interacting protein 3 (BNIP3) in MI/RI miniature pigs. CONCLUSION: In our study, the integration of network pharmacology and experiments in vivo demonstrated that SSNX interfered with MI/RI by inhibiting mitophagy.

8.
Molecules ; 28(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513479

RESUMO

Diabetic nephropathy (DN) contributes to increased morbidity and mortality among patients with diabetes and presents a considerable global health challenge. However, reliable biomarkers of DN have not yet been established. Phosphorylated proteins are crucial for disease progression. However, their diagnostic potential remains unexplored. In this study, we used ultra-high-sensitivity quantitative phosphoproteomics to identify phosphoproteins in urinary extracellular vesicles (uEVs) as potential biomarkers of DN. We detected 233 phosphopeptides within the uEVs, with 47 phosphoproteins exhibiting significant alterations in patients with DN compared to those in patients with diabetes. From these phosphoproteins, we selected phosphorylated aquaporin-2 (p-AQP2[S256]) and phosphorylated glycogen synthase kinase-3ß (p-GSK3ß[Y216]) for validation, as they were significantly overrepresented in pathway analyses and previously implicated in DN pathogenesis. Both phosphoproteins were successfully confirmed through Phos-tag western blotting in uEVs and immunohistochemistry staining in kidney sections, suggesting that phosphoprotein alterations in uEVs reflect corresponding changes within the kidney and their potential as candidate biomarkers for DN. Our research proposes the utilization of phosphoproteins in uEVs as a liquid biopsy, presenting a highly feasible diagnostic tool for kidney disease.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Vesículas Extracelulares , Humanos , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/metabolismo , Aquaporina 2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Biomarcadores/metabolismo , Proteoma/metabolismo , Vesículas Extracelulares/metabolismo , Fosfoproteínas/metabolismo , Diabetes Mellitus/metabolismo
9.
J Mol Med (Berl) ; 101(7): 877-890, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37246982

RESUMO

Ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), and there is no effective therapy. Microenvironmental acidification is generally observed in ischemic tissues. Acid-sensing ion channel 1a (ASIC1a) can be activated by a decrease in extracellular pH which mediates neuronal IRI. Our previous study demonstrated that, ASIC1a inhibition alleviates renal IRI. However, the underlying mechanisms have not been fully elucidated. In this study, we determined that renal tubule-specific deletion of ASIC1a in mice (ASIC1afl/fl/CDH16cre) attenuated renal IRI, and reduced the expression of NLRP3, ASC, cleaved-caspase-1, GSDMD-N, and IL-1ß. Consistent with these in vivo results, inhibition of ASIC1a by the specific inhibitor PcTx-1 protected HK-2 cells from hypoxia/reoxygenation (H/R) injury, and suppressed H/R-induced NLRP3 inflammasome activation. Mechanistically, the activation of ASIC1a by either IRI or H/R induced the phosphorylation of NF-κB p65, which translocates to the nucleus and promotes the transcription of NLRP3 and pro-IL-1ß. Blocking NF-κB by treatment with BAY 11-7082 validated the roles of H/R and acidosis in NLRP3 inflammasome activation. This further confirmed that ASIC1a promotes NLRP3 inflammasome activation, which requires the NF-κB pathway. In conclusion, our study suggests that ASIC1a contributes to renal IRI by affecting the NF-κB/NLRP3 inflammasome pathway. Therefore, ASIC1a may be a potential therapeutic target for AKI. KEY MESSAGES: Knockout of ASIC1a attenuated renal ischemia-reperfusion injury. ASIC1a promoted the NF-κB pathway and NLRP3 inflammasome activation. Inhibition of the NF-κB mitigated the NLRP3 inflammasome activation induced by ASIC1a.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais Iônicos Sensíveis a Ácido/genética , Canais Iônicos Sensíveis a Ácido/metabolismo , Camundongos Knockout , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo
10.
J Immunol Res ; 2023: 5513507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064008

RESUMO

Lipopolysaccharide (LPS)-induced septic acute kidney injury (AKI) is determined as a devastating organ dysfunction elicited by an inappropriate response to infection with high morbidity and mortality rates. Previous evidence has illustrated an indispensable role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the pathogenesis of sepsis-induced multiorgan abnormalities. Specifically, this study investigated the potential role of ALDH2 in sepsis-induced AKI. After LPS administration, we observed a significant decline in renal function, increased inflammatory cytokines, oxidative stress, 4-hydroxy-2-nonenal (4-HNE) accumulation, and apoptosis via MAPK activation in ALDH2-/- mice; in contrast, pretreatment with Alda-1 (an ALDH2 activator) alleviated the LPS-induced dysfunctions in mice. Moreover, in vitro analysis revealed that ALDH2 overexpression in mouse tubular epithelial cells (mTECs) improved the inflammatory response, oxidative stress, 4-HNE accumulation, and apoptosis via MAPK inhibition, whereas ALDH2 knockdown in mTECs aggravated these parameters via MAPK activation. Therefore, ALDH2 may protect against LPS-induced septic AKI by suppressing 4-HNE/MAPK pathway.


Assuntos
Injúria Renal Aguda , Aldeído-Desidrogenase Mitocondrial , Sepse , Animais , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Lipopolissacarídeos , Estresse Oxidativo , Sepse/metabolismo
11.
Food Res Int ; 167: 112656, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37087245

RESUMO

The distinctive aroma profile of kiwifruit juice was significantly changed during thermal treatment, however, the theoretical basis for clarifying and controlling the changes was deficient. In this study, we applied volatomics techniques to investigate the contributors of off-flavors in thermally treated kiwifruit juice. Sixteen aroma compounds were identified to be responsible for the typical "fruity", "grassy", and "cucumber-like" flavors of fresh kiwifruit by two different fused silica capillary columns coupled with chromatography-olfactometry/detection frequency (GC-O/DF) analysis and calculation of odor activity value (OAV). Thirty-one odor-active compounds were determined as important contributors to the sensory profile of thermally treated kiwifruit juice, 14 of which were common to all varieties investigated. The key aroma compounds on fresh kiwifruit significantly decreased after thermal treatment, while decanal, (E)-2-decenal, methional, ß-damascenone, 1-octen-3-one, DMHF, and dimethyl sulfide which presented undesirable cooked cabbage/potato, roasted fruit, and sulfurous odors, were accumulated in a large amount. By applying PLSR analysis, (E)-2-decenal, methional, ß-damascenone, DMHF, and dimethyl sulfide were further verified to have great contributions to the formation of the cooked off-flavor during thermal treatment. Moreover, XX was found to be more thermal-sensitive and more prone to forming cooked off-flavors after thermal treatment. This study could provide theoretical guidance for the regulation of thermal-induced off-flavors during the manufacturing of kiwifruit juice.


Assuntos
Odorantes , Olfato , Odorantes/análise , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Aromatizantes/análise
12.
Crit Rev Eukaryot Gene Expr ; 33(3): 27-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017667

RESUMO

High-grade serous ovarian cancer (HGSOC) is a preferential omental metastasis malignancy. Since omental adipose tissue is an endocrine organ, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) to compare the peptides secreted from omental adipose tissues of HGSOC and benign serous ovarian cysts (BSOC). Among the differentially secreted peptides, we detected 58 upregulated peptides, 197 downregulated peptides, 24 peptides that were only in the HGSOC group and 20 peptides that were only in the BSOC group (absolute fold change ≥ 2 and P < 0.05). Then, the basic characteristics of the differential peptides were analyzed, such as lengths, molecular weights, isoelectric points, and cleavage sites. Furthermore, we summarized the possible functions according to the precursor protein functions of the differentially expressed peptides by Gene Ontology (GO) analysis with the Annotation, Visualization, and Integrated Discovery (DAVID) database and canonical pathway analysis with IPA. For the GO analysis, the differentially secreted peptides were mainly associated with binding in molecular function and cellular processes in biology process. For the canonical pathways, the differentially secreted peptides were related to calcium signaling, protein kinase A signaling, and integrin-linked kinase (ILK) signaling. We also identified 67 differentially secreted peptides that located in the functional domains of the precursor proteins. These functional domains were mainly related to energy metabolism and immunoregulation. Our study might provide drugs that could potentially treat HGSOC or omental metastases of HGSOC cells.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/metabolismo , Tecido Adiposo
13.
Cell Death Discov ; 9(1): 82, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878898

RESUMO

Acute kidney injury (AKI) is a common clinical dysfunction with complicated pathophysiology and limited therapeutic methods. Renal tubular injury and the following regeneration process play a vital role in the course of AKI, but the underlining molecular mechanism remains unclear. In this study, network-based analysis of online transcriptional data of human kidney found that KLF10 was closely related to renal function, tubular injury and regeneration in various renal diseases. Three classical mouse models confirmed the downregulation of KLF10 in AKI and its correlation with tubular regeneration and AKI outcome. The 3D renal tubular model in vitro and fluorescent visualization system of cellular proliferation were constructed to show that KLF10 declined in survived cells but increased during tubular formation or conquering proliferative impediment. Furthermore, overexpression of KLF10 significantly inhibited, whereas knockdown of KLF10 extremely promoted the capacity of proliferation, injury repairing and lumen-formation of renal tubular cells. In mechanism, PTEN/AKT pathway were validated as the downstream of KLF10 and participated in its regulation of tubular regeneration. By adopting proteomic mass spectrum and dual-luciferase reporter assay, ZBTB7A were found to be the upstream transcription factor of KLF10. Our findings suggest that downregulation of KLF10 positively contributed to tubular regeneration in cisplatin induced acute kidney injury via ZBTB7A-KLF10-PTEN axis, which gives insight into the novel therapeutic and diagnostical target of AKI.

14.
Cell Death Dis ; 14(2): 140, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36805591

RESUMO

Analyses of several databases showed that the lncRNA RNF157 Antisense RNA 1 (RNF157-AS1) is overexpressed in epithelial ovarian cancer (EOC) tissues. In our study, suppressing RNF157-AS1 strikingly reduced the proliferation, invasion, and migration of EOC cells compared with control cells, while overexpressing RNF157-AS1 greatly increased these effects. By RNA pulldown assays, RNA binding protein immunoprecipitation (RIP) assays, and mass spectrometry, RNF157-AS1 was further found to be able to bind to the HMGA1 and EZH2 proteins. Chromatin immunoprecipitation (ChIP) assays showed that RNF157-AS1 and HMGA1 bound to the ULK1 promoter and prevented the expression of ULK1. Additionally, RNF157-AS1 interacted with EZH2 to bind to the DIRAS3 promoter and diminish DIRAS3 expression. ULK1 and DIRAS3 were found to be essential for autophagy. Combination autophagy inhibitor and RNF157-AS1 overexpression or knockdown, a change in the LC3 II/I ratio was found using immunofluorescence (IF) staining and western blot (WB) analysis. The autophagy level also was confirmed by autophagy/cytotoxicity dual staining. However, the majority of advanced EOC patients require platinum-based chemotherapy, since autophagy is a cellular catabolic response to cell stress. As a result, RNF157-AS1 increased EOC cell sensitivity to chemotherapy and death under cis-platinum (DDP) treatment by suppressing autophagy, as confirmed by cell count Kit-8 (CCK8) assays, flow cytometry, and autophagy/cytotoxicity dual staining. Therefore, the OS and PPS times were longer in EOC patients with elevated RNF157-AS1 expression. RNF157-AS1-mediated autophagy has potential clinical significance in DDP chemotherapy for EOC patients.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Feminino , Humanos , Carcinoma Epitelial do Ovário/genética , RNA Longo não Codificante/genética , Proteína HMGA1a , Autofagia/genética , Imunoprecipitação da Cromatina , Proteína HMGA1b , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteínas rho de Ligação ao GTP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
15.
Cell Signal ; 101: 110506, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309330

RESUMO

BACKGROUND: Acute kidney injury is a common fatal disease with complex etiology and limited treatment methods. Proximal tubules (PTs) are the most vulnerable segment. Not only in injured kidneys but also in normal kidneys, shedding of PTs often happens. However, the source cells and mechanism of their regeneration remain unclear. METHODS: ScRNA and snRNA sequencing data of acute injured or normal kidney were downloaded from GEO database to identify the candidate biomarker of progenitor of proximal tubules. SLICE algorithm and CytoTRACE analyses were employed to evaluate the stemness of progenitors. Then the repairing trajectory was constructed through pseudotime analyses. SCENIC algorithm was used to detect cell-type-specific regulon. With spatial transcriptome data, the location of progenitors was simulated. Neonatal/ adult/ aged mice and preconditioning AKI mice model and deconvolution of 2 RNA-seq data were employed for validation. RESULTS: Through cluster identification, PT cluster expressed Top2a specifically was identified to increase significantly during AKI. With relatively strong stemness, the Top2a-labeled PT cluster tended to be the origin of the repairing trajectory. Moreover, the cluster was regulated by Pbx3-based regulon and possessed great segmental heterogeneity. Changes of Top2a between neonatal and aged mice and among AKI models validated the progenitor role of Top2a-labeled cluster. CONCLUSIONS: Our study provided transcriptomic evidence that resident proximal tubular progenitors labeled with Top2a participated in regeneration. Considering the segmental heterogeneity, we find that there is a group of reserve progenitor cells in each tubular segment. When AKI occurs, the reserve progenitors of each tubular segment proliferate and replenish first, and PT-progenitors, a cluster with no obvious PT markers replenish each subpopulation of the reserve cells.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Traumatismo por Reperfusão/genética , Rim , Túbulos Renais Proximais , Isquemia/complicações , Biomarcadores , Reperfusão/efeitos adversos
16.
iScience ; 25(12): 105620, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36465115

RESUMO

TWIK-related acid-sensitive K+ channel-2 (TASK-2, encoded by Kcnk5) is essential in cell biological processes, by regulating transmembrane K+ balance. In the present study, we aimed to clarify the role of TASK-2 in renal fibrosis and explore the underlying mechanism. We found that TASK-2 level was elevated in the renal tubular UUO- and UIR-induced renal fibrosis as well as in patients with renal tubulointerstitial fibrosis. Knockout of Kcnk5 or inhibition of TASK-2 in renal tubules attenuated G2/M cell-cycle arrest and alleviated renal fibrosis. Mechanistically, demethylase fat mass and obesity-associated protein (FTO) reduced N6-adenosine methylation (m6A) of Kcnk5 mRNA following renal fibrosis. FTO deficiency attenuated the upregulation of TASK-2 and renal fibrosis. The results demonstrated the crucial role of TASK-2 in renal fibrosis, which is conducive to a better understanding of the pathogenesis of renal fibrosis. TASK-2 may be a potential treatment strategy to alleviate the development of renal fibrosis.

17.
J Clin Lab Anal ; 36(11): e24739, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36258308

RESUMO

BACKGROUND: The objective of the study was to explore the clinical significance of steroid hormones in the diagnosis of PCOS and PCOS-related insulin resistance through liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) and chemiluminescent immunoassay (CLIA). METHODS: The study included 114 patients with PCOS and 100 controls. Steroid hormone levels in serum were measured using LC-MS/MS and CLIA. The Bland-Altman method was used to check the consistency between the two methods. The diagnostic value of the LC-MS/MS method for female hyperandrogenemia and PCOS was evaluated. RESULTS: Women with PCOS were younger than controls on average (p < 0.001). PCOS patients had higher luteal hormone (LH, p < 0.001), insulin (p = 0.002), estradiol (E2, p < 0.001), total testosterone (TT, p < 0.001), free androgen index (FAI, p = 0.021), dehydroepiandrosterone sulfate (DHEA, p = 0.021), insulin resistance index (HOMA-IR) (p = 0.034), and fasting glucose (p = 0.017) levels than controls as measured by CLIA. The diagnostic value of TT was the best, and the area under the AUC curve was 0.766. Women with PCOS had higher androstenedione (A2, p < 0.001), FAI (p < 0.001), TT (p < 0.001), and 17-hydroxyprogesterone (17-OHP, p < 0.001) levels than controls as measured by LC-MS/MS. The ROC curve showed that the diagnostic efficacy of A2, TT, and 17-OHP was 0.830, 0.851, and 0.714, respectively. The consistency of TT detected by LC-MS/MS and CLIA was poor according to the Bland-Altman method. Detected TT by LC-MS/MS had the highest diagnostic efficiency for PCOS. The diagnostic power of the LC-MS/MS results for PCOS-related insulin resistance was analyzed. The results showed that the FAI had the highest diagnostic power, with an ROC curve of 0.798. CONCLUSION: LC-MS/MS is more sensitive and accurate than CLIA in the determination of serum TT and FAI. TT is more effective for the diagnosis of PCOS, whereas FAI is more valuable in the diagnosis of insulin resistance.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Feminino , Humanos , Testosterona , Cromatografia Líquida , Androgênios , Síndrome do Ovário Policístico/diagnóstico , Espectrometria de Massas em Tandem , Insulina , Esteroides
18.
Front Genet ; 13: 907145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860471

RESUMO

Background: Acute kidney injury (AKI) is a common clinical syndrome with limited methods of treatment and diagnosis. Although several molecules associated with AKI have been discovered, molecular mechanisms underlying AKI still remain unclear. Weighted gene co-expression network analysis (WGCNA) is a novel method to uncover the relationship between co-expression genes and clinical traits at the system level. Methods: First, by employing WGCNA in transcriptional data on 30 patients with well/poor functioning kidney graft, we identified two co-expression modules that were significantly related to serum creatinine (SCr). Second, based on the modules, potential small molecular compound candidates for developing targeted therapeutics were obtained by connectivity map analysis. Furthermore, multiple validations of expression in space/time were carried out with two classical AKI models in vivo and other five databases of over 152 samples. Results: Two of the 14 modules were found to be closely correlated with SCr. Function enrichment analysis illustrated that one module was enriched in the immune system, while the other was in the metabolic process. Six key renal function-related genes (RFRGs) were finally obtained. Such genes performed well in cisplatin-induced or cecal ligation and puncture-induced AKI mouse models. Conclusion: The analysis suggests that WGCNA is a proper method to connect clinical traits with genome data to find novel targets in AKI. The kidney tissue with worse renal function tended to develop a "high immune but low metabolic activity" expression pattern. Also, ACSM2A, GLYAT, CORO1A, DPEP1, ALDH7A1, and EPHX2 are potential targets of molecular diagnosis and treatment in AKI.

19.
Ren Fail ; 44(1): 1169-1181, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35837696

RESUMO

Acute kidney injury (AKI) is a serious condition with high mortality. The most common cause is kidney ischemia/reperfusion (IR) injury, which is thought to be closely related to pyroptosis. Disulfiram is a well-known alcohol abuse drug, and recent studies have shown its ability to mitigate pyroptosis in mouse macrophages. This study investigated whether disulfiram could improve IR-induced AKI and elucidated the possible molecular mechanism. We generated an IR model in mouse kidneys and a hypoxia/reoxygenation (HR) injury model with murine tubular epithelial cells (MTECs). The results showed that IR caused renal dysfunction in mice and triggered pyroptosis in renal tubular epithelial cells, and disulfiram improved renal impairment after IR. The expression of proteins associated with the classical pyroptosis pathway (Nucleotide-binding oligomeric domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-related specific protein (ASC), caspase-1, N-GSDMD) and nonclassical pyroptosis pathway (caspase-11, N-GSDMD) were upregulated after IR. Disulfiram blocked the upregulation of nonclassical but not all classical pyroptosis pathway proteins (NLRP3 and ASC), suggesting that disulfiram might reduce pyroptosis by inhibiting the caspase-11-GSDMD pathway. In vitro, HR increased intracellular ROS levels, the positive rate of PI staining and LDH levels in MTECs, all of which were reversed by disulfiram pretreatment. Furthermore, we performed a computer simulation of the TIR domain of TLR4 using homology modeling and identified a small molecular binding energy between disulfiram and the TIR domain. We concluded that disulfiram might inhibit pyroptosis by antagonizing TLR4 and inhibiting the caspase-11-GSDMD pathway.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Animais , Caspases/metabolismo , Simulação por Computador , Dissulfiram/farmacologia , Isquemia , Rim/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Receptor 4 Toll-Like
20.
J Med Genet ; 59(12): 1139-1149, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35701104

RESUMO

BACKGROUND: The SCN5A variant is a common cause of familial dilated cardiomyopathy (DCM). We previously reported a SCN5A variant (c.674G>A), located in the high-risk S4 segment of domain I (DI-S4) region in patients with idiopathic DCM and R225Q knockin (p.R225Q) mice carrying the c.674G>A variant exhibited prolonged baseline PR intervals without DCM phenotypes. In this study, we explored the association and mechanism between R225Q variant and DCM phenotype. METHODS: Prevalence of DI-S4 variant was compared between patients with idiopathic DCM and the control participants. R225Q knockin and wild-type (WT) mice were subjected to doxorubicin (DOX), D-galactose (D-gal) or D-gal combined with DOX. RESULTS: Clinical data suggested that the prevalence of DI-S4 variant was higher in DCM group than in the control group (4/90 (4.4%) vs 3/1339 (0.2%), p<0.001). Cardiomyocytes from R225Q knockin mice treated with D-gal and DOX exhibited more significant hypertrophic phenotype and weaker contraction/dilation function and an increased level of apoptosis as compared with WT mice. Mechanistically, we found that R225Q variant could increase intracellular pH and further induce the activation of the WNT/ß-catenin pathway as well as the overexpression of pro-hypertrophic and pro-apoptotic targets. WNT-C59 inhibitor improved cardiac function in the R225Q knockin mice treated with D-gal and DOX. CONCLUSION: Our results suggest that R225Q variant is associated with increased susceptibility to DCM. Ageing could enhance this process via activating WNT/ß-catenin signaling in response to increased intracellular pH. Antagonising the WNT/ß-catenin pathway might be a potential therapeutic strategy for mitigating R225Q variant-related DCM pathogenesis.


Assuntos
Cardiomiopatia Dilatada , Animais , Humanos , Camundongos , beta Catenina , Cardiomiopatia Dilatada/genética , Doxorrubicina , Concentração de Íons de Hidrogênio , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Via de Sinalização Wnt , Espaço Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...