Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Sci Rep ; 14(1): 15654, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977698

RESUMO

Colorectal cancer (CRC) stands as a major contributor to cancer-related fatalities within China. There is an urgent need to identify accurate biomarkers for recurrence predicting in CRC. Reduced representation bisulfite sequencing was used to perform a comparative analysis of methylation profiles in tissue samples from 30 recurrence to 30 non-recurrence patients with CRC. Least absolute shrinkage and selection operator method was performed to select the differential methylation regions (DMRs) and built a DNA methylation classifier for predicting recurrence. Based on the identified top DMRs, a methylation classifier was built and consisted of eight hypermethylated DMRs in CRC. The DNA methylation classifier showed high accuracy for predicting recurrence with an area under the receiver operator characteristic curve of 0.825 (95% CI 0.680-0.970). The Kaplan-Meier survival analysis demonstrated that CRC patients with high methylation risk score, evaluated by the DNA methylation classifier, had poorer survival than low risk score (Hazard Ratio 4.349; 95% CI 1.783-10.61, P = 0.002). And only CRC patients with low methylation risk score could acquire benefit from adjuvant therapy. The DNA methylation classifier has been proved as crucial biomarkers for predicting recurrence and exhibited promising prognostic value after curative surgery in patients with CRC.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Metilação de DNA , Recidiva Local de Neoplasia , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Biomarcadores Tumorais/genética , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Idoso , Estimativa de Kaplan-Meier , Regulação Neoplásica da Expressão Gênica
2.
Bioorg Med Chem Lett ; 107: 129780, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714262

RESUMO

Oncogenic KRAS mutations drive an approximately 25 % of all human cancers. Son of Sevenless 1 (SOS1), a critical guanine nucleotide exchange factor, catalyzes the activation of KRAS. Targeting SOS1 degradation has engaged as a promising therapeutic strategy for KRAS-mutant cancers. Herein, we designed and synthesized a series of novel CRBN-recruiting SOS1 PROTACs using the pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor as the warhead. One representative compound 11o effectively induced the degradation of SOS1 in three different KRAS-mutant cancer cell lines with DC50 values ranging from 1.85 to 7.53 nM. Mechanism studies demonstrated that 11o-induced SOS1 degradation was dependent on CRBN and proteasome. Moreover, 11o inhibited the phosphorylation of ERK and displayed potent anti-proliferative activities against SW620, A549 and DLD-1 cells. Further optimization of 11o may provide us promising SOS1 degraders with favorable drug-like properties for developing new chemotherapies targeting KRAS-driven cancers.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Proteína SOS1 , Humanos , Proteína SOS1/metabolismo , Proteína SOS1/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Pirimidinas/farmacologia , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinonas/farmacologia , Pirimidinonas/síntese química , Pirimidinonas/química , Quimera de Direcionamento de Proteólise
3.
Eur J Med Chem ; 272: 116489, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38759458

RESUMO

Although three generations of Epidermal growth factor receptor (EGFR) - TK inhibitors have been approved for the treatment of Non-small-cell lung cancers (NSCLC), their clinical application is still largely hindered by acquired drug resistance mediated new EGFR mutations and side effects. The Proteolysis targeting chimera (PROTAC) technology has the potential to overcome acquired resistance from mutant EGFR through a novel mechanism of action. In this study, we developed the candidate degrader IV-3 by structural modifications of the lead compound 13, which exhibited limited antiproliferative activity against HCC-827 cells. Compared to compound 13, IV-3 exhibited remarkable anti-proliferative activity against HCC-827 cells, NCI-H1975 cells, and NCI-H1975-TM cells (IC50 = 0.009 µM, 0.49 µM and 3.24 µM, respectively), as well as significantly inducing degradation of EGFR protein in these cell lines (DC50 = 17.93 nM, 0.25 µM and 0.63 µM, respectively). Further investigations confirmed that IV-3 exhibited superior anti-tumor activity in all xenograft tumor models through the degradation of mutant EGFR protein. Moreover, IV-3 showed no inhibitory activity against A431 and A549 cells expressing wild-type EGFR, thereby eliminating potential toxic side effects emerging from wild-type EGFR inhibition. Overall, our study provides promising insights into EGFR-PROTACs as a potential therapeutic strategy against EGFR-acquired mutation.


Assuntos
Antineoplásicos , Proliferação de Células , Receptores ErbB , Mutação , Proteólise , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Animais , Relação Estrutura-Atividade , Descoberta de Drogas , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Quimera de Direcionamento de Proteólise
4.
BMC Med ; 22(1): 147, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561764

RESUMO

BACKGROUND: Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The implementation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diagnostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy. METHODS: This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks (MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced representation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation (BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective outcomes. RESULTS: The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the validation cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy (88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework that prioritizes patients is provided, with fine-needle aspiration (FNA) biopsy performed only on patients with indications of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies. CONCLUSIONS: This is the first study to demonstrate the potential of non-invasive blood leukocytes in diagnosing TNs, thereby making TN diagnosis and treatment more efficient in China.


Assuntos
Neoplasias da Glândula Tireoide , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/genética , Estudos Prospectivos , Inteligência Artificial , Ultrassonografia , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Estudos Retrospectivos
5.
Heliyon ; 10(6): e27633, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496877

RESUMO

Introduction: The genetic heterogeneity of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations may affect clinical responses and outcomes to EGFR tyrosine kinase inhibitors (EGFR-TKIs). This study aims to investigate the genomic factors that influence the efficacy and clinical outcomes of first-line, second-line and third-line treatments in NSCLC and explore the heterogeneity of resistance mechanisms. Materials and methods: This real-world study comprised 65 patients with EGFR mutant NSCLC. Molecular alterations were detected using a customized DNA panel before and after administering targeted therapy. The efficacy and prognosis of each treatment line were evaluated. Results: In first-generation EGFR-TKIs treatment, gefitinib showed favorable efficacy compared to icotinib and erlotinib, particularly in patients with EGFR L858R mutations. The resistance mechanisms to first-generation EGFR-TKIs varied among different EGFR mutation cohorts and different first-generation EGFR-TKIs. In second-line EGFR-TKIs treatment, EPH receptor A3 (EPHA3), IKAROS family zinc finger 1 (IKZF1), p21 (RAC1) activated kinase 5 (PAK5), DNA polymerase epsilon, catalytic subunit (POLE), RAD21 cohesin complex component (RAD21) and RNA binding motif protein 10 (RBM10) mutations were markedly associated with poorer progression-free survival (PFS). Notably, EPHA3, IKZF1 and RBM10 were identified as independent predictors of PFS. The mechanisms of osimertinib resistance exhibited heterogeneity, with a higher proportion of non-EGFR-dependent resistant mutations. In third-line treatments, the combination of osimertinib and anlotinib demonstrated superior efficacy compared to other regimens. Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A) mutation was an independent risk indicator of shorter OS following third-line treatments. Conclusions: Comprehending the tumor evolution in NSCLC is advantageous for assessing the efficacy and prognosis at each stage of treatment, providing valuable insights to guide personalized treatment decisions for patients.

6.
Noncoding RNA Res ; 9(2): 294-306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38505310

RESUMO

Spinal facet joint osteoarthritis (FJOA) is an OA disease with pathogenesis and progression uncovered. Our present study was performed to elucidate the role of DNM3OS on spinal FJOA. In this study, spine facet joint tissue of patients were collected. In vitro and in vivo models were constructed with SW1353 cells and rats. Hematoxylin and eosin (HE) staining, Safranin O-fast Green, Alcian blue staining, and Tolueine blue O (TBO) staining were employed for histology analyses. Quantitative PCR, western blotting, and Immunofluorescence were performed to evaluate the expression of genes. The levels of inflammatory cytokines were measured by enzyme-linked immunosorbent assay analysis. Cell Counting Kit-8 and flow cytometry were used for cell activity and apoptosis evaluation. The targeting sites between microRNA (miR)-127-5p and cadherin 11 (CDH11) were predicted TargetScan and miRbase database and confirmed by Dual-luciferase reporter assays. CHIP and EMS assay were employed to confirm the binding of LEF1and DNM3OS promoter. Our results showed that DNM3OS was found to upregulated, while miR-127-5p was downregulated in severe FJOA patients and inflammation-induced chondrosarcoma SW1353 cells. DNM3OS reduced cell activity, induced cell apoptosis and extracellular matrix (ECM) degradation by sponging miR-127-5p in vitro. miR-127-5p targeted CDH11 and inhibited wnt3a/ß-catenin pathway to regulate OA in vitro. LEF1 promoted DNM3OS transcription to form a positively feedback in activated wnt3a/ß-catenin pathway. In vivo rat model also confirmed that DNM3OS aggravated FJOA. In summary, DNM3OS/miR-127-5p/CDH11 enhanced Wnt3a/ß-Catenin/LEF-1 pathway to form a positive feedback and aggravate spinal FJOA.

7.
Am J Cancer Res ; 14(1): 33-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323283

RESUMO

The genetic heterogeneity of non-small cell lung cancer (NSCLC) may impact clinical response and outcomes to targeted therapies. In second-line osimertinib treatment for NSCLC, real-world data on genetic biomarkers for treatment efficacy and prognosis remain incomplete. This real-world study involved 68 NSCLC patients receiving first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). All of these patients developed resistance, and 49 of them subsequently underwent second-line osimertinib treatment. A 639-gene DNA panel was employed to assess the impact of molecular alterations on treatment efficacy, clinical outcomes and resistance. The findings showed that the median progression-free survival (PFS) for second-line osimertinib therapy was 13.3 months. Genes alterations such as P21 (RAC1) activated kinase 5 (PAK5), RNA binding motif protein 10 (RBM10), and EPH receptor A3 (EPHA3) mutations were associated with significantly shorter PFS in osimertinib therapy. At multivariate analysis, they were all independent risk predictors of shorter PFS. Additionally, the median overall survival (OS) for osimertinib was 26.2 months. Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A), hepatocyte growth factor (HGF), and RBM10 mutations were significantly associated with poorer OS in osimertinib treatment. The multivariate analysis demonstrated that only RBM10 mutation emerged as an independent risk predictor of shorter OS. In vitro experiments showed that RBM10 mutations could promote the proliferation and migration ability of NSCLC cells and reduced cell apoptosis. The resistance mechanisms to osimertinib were heterogeneous. Histone cluster 1 H2B family member D (HIST1H2BD) acted as a novel resistance mechanism to osimertinib. Previously unreported HIST1H2BD mutations (p.K25Q and p.E36D) were detected in the NSCLC tissues. In vitro experiments confirmed that HIST1H2BD mutations led to resistance to osimertinib. In summary, we demonstrate that genetic biomarkers, such as PAK5, RBM10, and EPHA3, are independent predictors of PFS in second-line osimertinib treatment, with RBM10 emerging as an independent predictor of OS. Additionally, HIST1H2BD represents a novel resistance mutation to osimertinib. All of these findings offer valuable insights for making personalized treatment strategies for NSCLC patients.

8.
Brain Behav ; 13(12): e3325, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010098

RESUMO

INTRODUCTION: Previous studies have shown that Gandouling (GDL) may alleviate the nerve damage caused by Wilson's disease (WD) by inhibiting the autophagy of nerve cell mitochondria. However, its mechanisms are still unclear. Revealing the therapeutic mechanism of GDL is beneficial for its clinical application and provides theoretical support for the development of new formulations for treating WD. METHOD: This time we found that the oxidative stress level in the body of the copper-overloaded WD rates increased, neurons in the hippocampus were damaged, and autophagy occurred. GDL reversed these situations and significantly improved the learning, memory, and spatial cognitive abilities of the high-copper-loaded WD rates. After GDL intervention, the expression of phosphatidylinositol-3 kinase (PI3K), phosphorylated serine-threonine protein kinase (AKT), and phosphorylated forkhead box protein O1 (FoxO1) significantly increased, whereas FoxO1 in the nucleus decreased and phosphorylated FoxO1 in the cytoplasm also significantly raised. In addition, the expression of Sirt1 significantly declined, and Ac-FoxO1 in the nucleus also significantly increased. RESULTS: These data indicated that GDL may promote the phosphorylation of FoxO1 and promote its nucleation by activating the PI3K/AKT/FoxO1 signaling pathway and inhibit Ac-FoxO1 hydrolysis in the nucleus through the Sirt1/FoxO1 signaling pathway to suppress the transcriptional activity of FoxO1. CONCLUSION: Furthermore, it inhibited the expression of autophagy genes Atg12 and Gabarapl1. In summary, our work provides new insights into the potential mechanisms of GDL repairing WD neuronal damage through autophagy pathways.


Assuntos
Degeneração Hepatolenticular , Fosfatidilinositol 3-Quinase , Ratos , Animais , Fosfatidilinositol 3-Quinase/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sirtuína 1/metabolismo , Cobre , Transdução de Sinais , Autofagia
9.
Materials (Basel) ; 16(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834585

RESUMO

Concrete mixture design has been a key focus in concrete research. This study presents a new method for concrete mixture design by combining artificial neural networks (ANN), genetic algorithms (GA), and Scipy libraries for hybrid intelligent modeling. This method enables the prediction of concrete mechanical properties and the optimization of mix proportions with single or multi-objective goals. The GA is used to optimize the structure and weight parameters of ANN to improve prediction accuracy and generalization ability (R2 > 0.95, RMSE and MAE < 10). Then, the Scipy library combined with GA-ANN is used for the multi-objective optimization of concrete mix proportions to balance the compressive strength and costs of concrete. Moreover, an AI-based concrete mix proportion design system is developed, utilizing a user-friendly GUI to meet specific strength requirements and adapt to practical needs. This system enhances optimization design capabilities and sets the stage for future advancements. Overall, this study focuses on optimizing concrete mixture design using hybrid intelligent modeling and multi-objective optimization, which contributes to providing a novel and practical solution for improving the efficiency and accuracy of concrete mixture design in the construction industry.

10.
Drug Des Devel Ther ; 17: 1763-1782, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333964

RESUMO

Purpose: Gandouling Tablets (GDL), a proprietary Chinese medicine, have shown a preventive effect against Wilson's disease (WD)-induced neuronal damage in previous studies. However, the potential mechanisms need additional investigation. Combining metabonomics and network pharmacology revealed the GDL pathway against WD-induced neuronal damage. Methods: The WD rat model with a high copper load was developed, and nerve damage was assessed. Total metabonomics was used to identify distinct hippocampus metabolites and enriched metabolic pathways in MetaboAnalyst. The GDL's possible targets against WD neuron damage were then determined by network pharmacology. Cytoscape constructed compound metabonomics and pharmacology networks. Moreover, molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) validated key targets. Results: GDL reduced WD-induced neuronal injury. Twenty-nine GDL-induced metabolites may protect against WD neuron injury. According to network pharmacology, we identified three essential gene clusters, of which genes in cluster 2 had the most significant impact on the metabolic pathway. A comprehensive investigation identified six crucial targets, including UGT1A1, CYP3A4, CYP2E1, CYP1A2, PIK3CB, and LPL, and their associated core metabolites and processes. Four targets reacted strongly with GDL active components. GDL therapy improved five targets' expression. Conclusion: This collaborative effort revealed the mechanisms of GDL against WD neuron damage and a way to investigate the potential pharmacological mechanisms of other Traditional Chinese Medicine (TCM).


Assuntos
Medicamentos de Ervas Chinesas , Degeneração Hepatolenticular , Ratos , Animais , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Cobre/metabolismo , Cobre/uso terapêutico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Metabolômica , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
11.
Cell Biol Toxicol ; 39(3): 1099-1118, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34697729

RESUMO

OBJECTIVE: To probe the performance of miR-337-3p on the facet joint osteoarthritis (FJOA) and its underlying mechanism. METHODS: qRT-PCR and Western blot were utilized to analyze the levels of miR-337-3p and DUSP1 in the synovial tissues from 36 FJOA patients and 10 healthy controls. The human synovial fibroblasts of FJOA were isolated and cultured followed by cell transfection. Then, cells were exposed to 10 ng/mL of IL-1ß to induce inflammatory response of synovial fibroblasts. The alternation on cell biological function in cell models was determined. The binding of miR-337-3p and SKP2 was predicted by StarBase, TargetScan, DIANA-microT and miRmap, and further verified by RIP assay and dual-luciferase reporter assay. Co-IP experiment and ubiquitination assay were used to display the binding of SKP2 and DUSP1 as well as the ubiquitination and degradation of DUSP1. After that, the FJOA rat model was established and miR-337-3p mimic or negative control was given to rats by tail vein injection. The pathological changes of synovial tissues, synovitis score, and inflammation level in rats were assessed. RESULTS: The low expressions of miR-337-3p and DUSP1 were noticed in the synovial tissues of FJOA patients and in IL-1ß-induced synovial fibroblasts, and highly expressed p-p38 MAPK was noticed. Upregulation of miR-337-3p/DUSP1 or downregulation of SKP2 inhibited IL-1ß-induced proliferation and inflammatory response of synovial fibroblasts. SKP2 was the target gene of miR-337-3p, and SKP2 induced the ubiquitination and degradation of DUSP1. MiR-337-3p exerted a protective effect on FJOA rats by alleviating damage of rat synovial tissues, promoting cell apoptosis and repressing inflammatory response. CONCLUSION: MiR-337-3p plays a protective role in FJOA by negatively targeting SKP2 to suppress DUSP1 ubiquitination and inactivate the p38 MAPK pathway.


Assuntos
MicroRNAs , Osteoartrite , Articulação Zigapofisária , Animais , Humanos , Ratos , Apoptose/genética , Regulação para Baixo , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 1 de Especificidade Dupla/metabolismo , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/patologia , Articulação Zigapofisária/metabolismo , Articulação Zigapofisária/patologia
12.
BMC Musculoskelet Disord ; 23(1): 872, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127685

RESUMO

BACKGROUND: Our previous study identified miR-99a as a negative regulator of early chondrogenic differentiation. However, the functional role of miR-99a in the pathogenesis of osteoarthritis (OA) remains unclear. METHODS: We examined the levels of miR-99a and Frizzled 8 (FZD8) expression in tissue specimens. Human SW1353 chondrosarcoma cells were stimulated with IL-6 and TNF-α to construct an in vitro OA environment. A luciferase reporter assay was performed to analyze the relationship between miR-99a and FZD8. CCK-8 assays, flow cytometry, and ELISA assays were used to assess cell viability, apoptosis, and inflammatory molecule expression, respectively. Percutaneous intra-spinal injections of papain mixed solution were performed to create an OA Sprague-Dawley rat model. Alcian Blue staining, Safranin O Fast Green staining, and Toluidine Blue O staining were performed to detect the degrees of cartilage injury. RESULTS: MiR-99a expression was downregulated in the severe spine OA patients when compared with the mild spine OA patients, and was also decreased in the experimentally induced in vitro OA environment when compared with the control environment. Functionally, overexpression of miR-99a significantly suppressed cell apoptosis and extracellular matrix degradation stimulated by IL-6 and TNF-α. FZD8 was identified as a target gene of miR-99a. Furthermore, the suppressive effects of miR-99a on cell injury induced by IL-6 and TNF-α were reversed by FZD8 overexpression. Moreover, the levels of miR-99a expression were also reduced in the induced OA model rats, and miR-99a agomir injection relieved the cartilage damage. At the molecular level, miR-99a overexpression downregulated the levels of MMP13, ß-catenin, Bax, and caspase-3 protein expression and upregulated the levels of COL2A1 and Bcl-2 protein expression in the in vitro OA-like chondrocyte model and also in the experimental OA model rats. CONCLUSIONS: Our data showed that miR-99a alleviated apoptosis and extracellular matrix degradation by targeting FZD8, and thereby suppressed the development and progression of experimentally induced spine osteoarthritis.


Assuntos
MicroRNAs , Osteoartrite da Coluna Vertebral , Osteoartrite , Receptores de Superfície Celular , Animais , Apoptose/genética , Caspase 3/metabolismo , Matriz Extracelular/patologia , Humanos , Interleucina-6/metabolismo , Luciferases/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/patologia , Osteoartrite da Coluna Vertebral/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , beta Catenina/metabolismo
13.
Materials (Basel) ; 15(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454631

RESUMO

Considering that it is difficult for traditional materials to simultaneously meet the requirements for filling grouting of water-filled karst caves and subsequent shield tunneling, an environmentally friendly and controllable new underwater cementitious filling material (NUC-FM) is developed, with abandoned shield mud as the basic raw material. Through laboratory tests, the mechanical property parameters of NUC-FM are tested, and its micromechanism is analyzed. The research results show that there is excellent synergistic interactions among shield mud, cement, flocculant, fly ash and other raw materials. The NUC-FM grouting filling material with superior performance can be prepared when the water binder ratio is between 0.45 and 0.6 and the water consumption is between 270 and 310 kg/m3. It has the characteristics of non-dispersion underwater and moderate consolidated body strength. The compressive strength of the NUC-FM consolidated body samples under each mix proportion is much higher than 0.5 MPa, which meets the technical strength requirements of a construction site, and the microstructure shows that there is an obvious dense and stable block structure inside. The cost of the NUC-FM prepared with an optimized mix proportion is only 34.57 dollars/m3, which is far lower than the market purchase price of concrete and cement mortar. It can be predicted that the NUC-FM is an ideal filling grouting material for water-filled karst caves in shield tunnels in water-rich karst areas.

14.
Front Oncol ; 11: 726547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970478

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and a highly heterogeneous disease with a diversity of phenotypes and genotypes in different populations. The purpose of this study is to investigate oncogenic alterations of lung adenocarcinoma (LUAD) in eastern China and their significance in targeted therapies. METHODS: This study enrolled 101 LUAD patients and used a customized DNA panel to detect molecular alterations. Comprehensive analysis of mutations and clinical application of genomic profiling was carried out. RESULTS: The most commonly mutated genes were epidermal growth factor receptor (EGFR) (53%) and tumor protein p53 (TP53) (32%). The less frequently mutated genes were erb-b2 receptor tyrosine kinase 2 (ERBB2) (25%), ATR serine/threonine kinase (ATR) (20%), CCAAT enhancer binding protein alpha (CEBPA) (16%), RB transcriptional corepressor 1 (RB1) (16%), transcription factor 7 like 2 (TCF7L2) (14%), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) (12%) and spectrin alpha, erythrocytic 1 (SPTA1) (12%). Among them, the frequency of ERBB2, ATR, CEBPA, RB1 and TCF7L2 mutations was much higher than that in the databases. Seventy percent of the patients harbored at least one actionable alteration according to the OncoKB evidence. CEBPA mutations affected the efficacy of EGFR-tyrosine kinase inhibitors. ERBB2, CEBPA and TCF7L2 mutated tumors tend to have higher tumor mutation burden (TMB). CONCLUSIONS: LUAD patients from eastern China have a unique profile of mutations. The targeted DNA panel is helpful for personalized treatment decision of LUAD patients, and specific mutations may affect the efficacy of targeted therapies.

15.
Ann Transl Med ; 9(14): 1150, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34430591

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) patients harboring mutations in the epidermal growth factor receptor (EGFR) gene respond dramatically to EGFR tyrosine kinase inhibitors (TKIs). However, these patients inevitably develop acquired resistance to EGFR-TKIs. Among them, small cell lung cancer (SCLC) transformation is a relatively rare mechanism. METHODS: We used a 639 cancer-relevant gene panel to detect genetic differences in tissues before and after EGFR-TKIs resistance caused by SCLC transformation. In vitro experiments were conducted to study the role of ETS variant transcription factor 1 (ETV1) on SCLC transformation and EGFR-TKIs resistance. RESULTS: We present two EGFR-mutant lung adenocarcinoma (LUAD) patients. One patient, with EGFR exon 19 deletion (Ex19del), accepted first-line gefitinib treatment and then received osimertinib treatment due to acquisition of an EGFR-T790M mutation. A novel ETV1 mutation (p.P159S) was detected in the SCLC tissue after osimertinib resistance when not coexisting with T790M. The other patient harbored an EGFR exon 21 mutation (p.L858R), and had a long-lasting response to first-line gefitinib, and then transformed to SCLC after TKI resistance. A previously unreported ETV1 mutation (p.E462Q) was detected in the SCLC tissue. In vitro, ETV1 p.E462Q and p.P159S mutations participated in neuroendocrine differentiation by inducing the expression of achaete-scute homolog 1 (ASCL1) and promoting the proliferation of H69 cells. ETV1 p.E462Q and p.P159S mutations were also resistant to gefitinib and osimertinib after introduction into H358 cells. CONCLUSIONS: Novel ETV1 p.E462Q and p.P159S mutations were found in the SCLC tissues of TKIs-resistant LUAD patients, providing a new understanding of ETV1 involvement in acquired resistance to EGFR-TKIs via SCLC transformation.

16.
BMC Pregnancy Childbirth ; 21(1): 454, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34182950

RESUMO

BACKGROUND: Iodine plays an important role in pregnancy. How to maintain adequate iodine intake amongst pregnant women in each trimester of pregnancy to prevent adverse birth outcomes in central China is a challenge for clinical practice. METHODS: 870 pregnant women and their infants were enrolled in the study. Urinary iodine concentration (UIC) was measured using an inductively coupled plasma mass spectrometry (ICP-MS). Maternal and newborn information were obtained during follow-up. Multinomial logistic regression models were established. RESULTS: Median UIC of pregnant women was 172 ± 135 µg/L which is currently considered to be sufficient. Multivitamin supplements containing iodine, iodized salt intake and frequent milk intake were significantly associated with higher UIC. Multivariate logistic regression analysis showed that multivitamin supplements containing iodine and milk consumption were risk factors for more than adequate iodine (UIC ≥ 250 µg/L). Iodine-rich diet was significantly related to heavier birthweight, larger head circumference and longer femur length of the newborns while more than adequate iodine intake (UIC ≥ 250 µg/L) was a risk factor for macrosomia. Logistic regression models based on potential risk factors involving iodine containing supplements and iodine-rich diet were established to predict and screen pregnant women with high risk of more than adequate iodine intake among local pregnant women in different trimesters and guide them to supplement iodine reasonably to prevent the risk. CONCLUSIONS: Multivitamin supplements containing iodine and milk consumption were risk factors for maternal UIC ≥ 250 µg/L which was a risk factor for macrosomia. Iodine monitoring models were established to provide guidance for pregnant women to reduce the risk of more than adequate iodine intake, thereby contributing to reduce the risk of having a macrosomia.


Assuntos
Iodo/efeitos adversos , Modelos Teóricos , Avaliação Nutricional , Complicações na Gravidez/prevenção & controle , Cuidado Pré-Natal/métodos , Adulto , Animais , China , Dieta/efeitos adversos , Dieta/métodos , Inquéritos sobre Dietas , Suplementos Nutricionais/efeitos adversos , Suplementos Nutricionais/análise , Ingestão de Alimentos , Feminino , Macrossomia Fetal/etiologia , Macrossomia Fetal/prevenção & controle , Humanos , Recém-Nascido , Iodo/análise , Iodo/urina , Modelos Logísticos , Leite/efeitos adversos , Estado Nutricional , Gravidez , Complicações na Gravidez/etiologia , Complicações na Gravidez/urina , Trimestres da Gravidez/urina , Fatores de Risco , Cloreto de Sódio na Dieta/efeitos adversos
17.
Cell Mol Biol Lett ; 26(1): 22, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049478

RESUMO

BACKGROUND: Improved chondrogenic differentiation of mesenchymal stem cells (MSCs) by genetic regulation is a potential method for regenerating articular cartilage. MiR-127-5p has been reported to promote cartilage differentiation of rat bone marrow MSCs (rMSCs); however, the regulatory mechanisms underlying hypoxia-stimulated chondrogenic differentiation remain unknown. METHODS: rMSCs were induced to undergo chondrogenic differentiation under normoxic or hypoxic conditions. Expression of lncRNA DNM3OS, miR-127-5p, and GREM2 was detected by quantitative real-time PCR. Proteoglycans were detected by Alcian blue staining. Western blot assays were performed to examine the relative levels of GREM2 and chondrogenic differentiation related proteins. Luciferase reporter assays were performed to assess the association among DNM3OS, miR-127-5p, and GREM2. RESULTS: MiR-127-5p levels were upregulated, while DNM3OS and GREM2 levels were downregulated in rMSCs induced to undergo chondrogenic differentiation, and those changes were attenuated by hypoxic conditions (1% O2). Further in vitro experiments revealed that downregulation of miR-127-5p reduced the production of proteoglycans and expression of chondrogenic differentiation markers (COL1A1, COL2A1, SOX9, and ACAN) and osteo/chondrogenic markers (BMP-2, p-SMAD1/2). MiR-127-5p overexpression produced the opposite results in rMSCs induced to undergo chondrogenic differentiation under hypoxic conditions. GREM2 was found to be a direct target of miR-127-5p, which was suppressed in rMSCs undergoing chondrogenic differentiation. Moreover, DNM3OS could directly bind to miR-127-5p and inhibit chondrogenic differentiation of rMSCs via regulating GREM2. CONCLUSIONS: Our study revealed a novel molecular pathway (DNM3OS/miR-127-5p/GREM2) that may be involved in hypoxic chondrogenic differentiation.


Assuntos
Condrogênese , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Proteínas/genética , RNA Longo não Codificante/genética , Animais , Diferenciação Celular , Hipóxia Celular , Células Cultivadas , Regulação da Expressão Gênica , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos
18.
Open Life Sci ; 16(1): 150-159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33817307

RESUMO

The purpose of this study was to assess the relationship between 25-hydroxyvitamin D (25(OH)D), urinary iodine concentration (UIC), and type 2 diabetes mellitus (T2DM) risk and complications and to establish a model to predict T2DM in the general population. A total of 567 adults (389 T2DM patients and 178 controls) were enrolled, and the levels of 25(OH)D, iodine, and blood biochemical parameters were measured. Pearson's correlation analysis showed an inverse correlation between 25(OH)D level, UIC, and T2DM risk. Low 25(OH)D level was a risk factor for developing T2DM (OR, 0.81; 95% CI, 1.90-2.63; P = 0.043) after adjustment for multiple risk factors. 25(OH)D level and UIC were inversely correlated with short-term and long-term glucose levels. 25(OH)D deficiency was also associated with a high incidence of T2DM complicated with thyroid dysfunction. A prediction model based on 25(OH)D, iodine status, and other risk factors was established and recommended to screen high-risk T2DM in the general population and provide early screening and timely treatment for them.

19.
Lipids Health Dis ; 19(1): 177, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32723324

RESUMO

BACKGROUND: Intima-media thickness (IMT) and small dense low-density lipoprotein cholesterol (sdLDL-C) have been reported to be related to atherosclerosis and stroke. This study is trying to explore the association between IMT and sdLDL-C in Chinese acute ischaemic stroke (AIS) subjects. METHODS: This study enrolled total 368 consecutive AIS patients and 165 non-AIS controls from November 2016 to February 2019. Mean IMT and carotid plaques were measured by using carotid ultrasonography method. Blood glucose and lipid parameters were measured by using an automatic biochemical instrument. SdLDL-C was detected by using the Lipoprint LDL system. IMT > 1.0 mm was defined as increased IMT. Plaque stability based on the nature of the echo was determined by ultrasound examination. Risk factors for IMT were identified by using multivariate logistic regression analysis. A logistic regression model was established to predict AIS risk. Python software (Version 3.6) was used for the statistical analysis of all data. RESULTS: The carotid IMT, proportion of plaques, and the sdLDL-C, triglycerides (TG) and glucose levels were obviously higher in AIS patients than those in controls. SdLDL-C level in the IMT thickening group was higher than that in the normal IMT group. SdLDL-C and total cholesterol (TC) were risk factors for IMT, while sdLDL-C was an independent risk factor. The IMT value of the unstable plaque group was markedly higher than that of the stable plaque group. The predictive value of IMT for AIS was better than that of low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol (non-HDL-C) but not as good as that of sdLDL-C. A logistic regression model was established to predict AIS risk. Additionally, carotid IMT and sdLDL-C were closely related to AIS severity and outcomes. CONCLUSIONS: SdLDL-C and TC were risk factors for increased IMT, while sdLDL-C was an independent risk factor. A prediction model based on IMT and other variables was established to screen the population with high AIS risk.


Assuntos
Isquemia Encefálica/sangue , Espessura Intima-Media Carotídea , LDL-Colesterol/sangue , Adulto , Artérias Carótidas/patologia , Feminino , Humanos , AVC Isquêmico/sangue , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/sangue , Prognóstico , Estudos Retrospectivos , Fatores de Risco , Triglicerídeos/sangue
20.
J Clin Lab Anal ; 34(9): e23376, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32537819

RESUMO

BACKGROUND: The prevalence of vitamin D deficiency and insufficiency is extremely high in pregnant women worldwide. However, the association between single nucleotide polymorphisms (SNPs) in vitamin D metabolic pathway genes and 25-hydroxyvitamin D (25(OH)D) concentration among Chinese pregnant women is seldom reported. The risk of adverse neonatal outcomes due to maternal vitamin D deficiency has not been well investigated. METHODS: A total of 815 pregnant women and 407 infants were enrolled in this study. Serum 25(OH)D concentration was detected. DNA was extracted from the maternal blood for genotyping genetic SNPs in vitamin D pathway. An XGBoost model was established based on SNPs combined with external variables. RESULTS: Mean serum 25(OH)D level was 15.67 ± 7.98 ng/mL among the pregnant women. Seventy-five percent of pregnant women had 25(OH)D deficiency in China. SNPs of GC (rs17467825, rs4588, rs2282679, rs2298850, and rs1155563) were significantly associated with maternal 25(OH)D concentration. The influence of variants of rs17467825, rs4588, rs2282679, and rs2298850 on maternal 25(OH)D might be modified by vitamin D supplementation and sunshine exposure. An XGBoost model was established for monitoring 25(OH)D status in pregnant women and provided clinical advice to reduce the risk of 25(OH)D deficiency. Mothers with 25(OH)D deficiency hinted a risk for macrosomia. CONCLUSION: A high prevalence of vitamin D deficiency in China has been confirmed. A clinical model was established to guide pregnant women to supplement vitamin D according to genotype. Furthermore, we suggest the effect of maternal vitamin D status on the risk of macrosomia.


Assuntos
Complicações na Gravidez , Deficiência de Vitamina D , Proteína de Ligação a Vitamina D/genética , Adulto , China , Suplementos Nutricionais , Feminino , Humanos , Lactente , Polimorfismo de Nucleotídeo Único/genética , Gravidez , Complicações na Gravidez/epidemiologia , Complicações na Gravidez/genética , Vitamina D , Deficiência de Vitamina D/epidemiologia , Deficiência de Vitamina D/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...