Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 78: 100723, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32992231

RESUMO

Cancer as a genetic disease is by now well recognized. Genomic analysis of cancer cells, therefore, has greatly enhanced our ability to identify genetic alterations associated with various cancer types, including both lympho-hematopoietic as well as solid tumors. Chronic myeloid leukemia (CML), based on the specific diagnostic genetic abnormality has served as a prototype disease to clearly demonstrate the significance of the genomic analysis of cancer in identifying targeted therapy. Such a success has provided extra ordinary opportunities to investigate the role of genetic abnormalities and the pathways amenable to targeted therapy, not only in blood cancers but solid tumors such as Lung, Brain, Colon, Renal, Breast cancers as well as other epithelial and mesenchymal tumors. The main focus of this presentation is to illustrate the role of genomic analysis in targeting lung cancer, based on abnormalities or the pathways deregulated in tumor cells from individual patients. Lung cancer is one of the most common epithelial cancers associated with chronic inflammation due to cigarette smoking and other environmental carcinogens, and includes four distinct histologic type; non-small cell lung cancer (NSCLC); small cell lung cancer (SCLC) and squamous cell lung cancer. According to current estimates, 1.3 million cases of lung cancer are expected to be diagnosed worldwide annually, resulting in one million deaths. Since the discovery that patient's tumors with specific mutations in the EGFR may be sensitive to targeted therapeutic approach and the subsequent realization that the such mutations in the gene are not as prevalent, several cancer centers including ours initiated intense efforts to find other mutations or genomic alterations, which may serve as targets of specific therapy. Such efforts have successfully resulted in a battery of genes such as KRAS, ALK, C-MET, HER-2/neu, ROS1, etc., which have helped oncologists to triage the patients for personalized therapies. A significant proportion of patients with lung cancer, however, do not show any of the above genetic abnormalities. Approximately 90% of lung cancers exhibit RB1 mutation/deletion and or KRAS mutations, therefore, the signaling pathways, which regulate multistep tumorigenesis in lung cancer, are important for the treatment of histologic subtypes of lung cancer, which includes NSCLC & SCLC. Equally important was the findings that similar signaling pathways are also shared by other solid tumor types. We have investigated the role of these pathways to target these cancers and develop new strategies to treat lung, brain and related cancers. In addition, our translational studies in other tumor types such as NF2 related malignancies, specifically, Malignant Mesothelioma (MM), in which NF2 related pathway amenable to targeted therapies was identified. Selected examples representing experimental approaches will be discussed to illustrate the critical role of translational research in developing novel therapeutics for the successful and durable responses in some of these cancer types.


Assuntos
Genômica , Neoplasias Pulmonares/genética , Mesotelioma Maligno/genética , Genes ras , Humanos , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
2.
Adv Biol Regul ; 64: 20-32, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28242412

RESUMO

Genomic instability (GIN) is a hallmark of most cancer cells. However, compared to most human cancer cell types, the retinoblastoma tumor cells show a relatively stable genome. The fundamental basis of this genomic stability has yet to be elucidated, and the role of certain proteins involved in cell cycle regulation may be the key to the development of these specific genotypes. We examined whether thyroid hormone receptor beta 1 and 2 (TRß1 and TRß2), known to regulate tumorigenesis, and PTTG1, a mitotic checkpoint protein, play a role in maintaining genomic stability in retinoblastoma. In order to elucidate the role of these proteins in development of aneuploidy/polyploidy, an indicator of GIN, we first studied comparative GIN in retinoblastomas and multiple RB mutant cancer cell lines using single nucleotide polymorphism (SNP) analysis. We then utilized pLKO lentiviral vectors to selectively modify expression of the targeted cell cycle proteins and interpret their effect on downstream cell cycle proteins and their relative effects on the development of polyploidy in multiple tumor cell lines. The SNP analysis showed that retinoblastomas displayed relatively fewer genomic copy number changes as compared to other RB1-deficient cancer cell lines. Both TRß1 and TRß2 knockdown led to accumulation of E2F1 and PTTG1 and increased GIN as demonstrated by an increase in polyploidy. Downregulation of PTTG1 led to a relative decrease in GIN while upregulation of PTTG1 led to a relative increase in GIN. Knockdown of E2F1 led to a downstream decrease in PTTG1 expression. Rb-knockdown also upregulated E2F1 and PTTG1 leading to increased GIN. We showed that Rb is necessary for PTTG1 inhibition and genomic stability. A relatively stable genome in retinoblastoma tumor cells is maintained by TRß1 and TRß2-mediated PTTG1 inhibition, counteracting Rb-deficiency-related GIN. TRß1, TRß2 and Rb-KD all led to the downstream PTTG1 accumulation, apparently through an activation of E2F1 resulting in extensive genomic instability as seen in other Rb-deficient tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Retina/genética , Proteína do Retinoblastoma/genética , Retinoblastoma/genética , Securina/genética , Receptores beta dos Hormônios Tireóideos/genética , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição E2F1/antagonistas & inibidores , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Instabilidade Genômica , Humanos , Camundongos , Camundongos Knockout , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Poliploidia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Proteína do Retinoblastoma/deficiência , Securina/agonistas , Securina/antagonistas & inibidores , Securina/metabolismo , Transdução de Sinais , Receptores beta dos Hormônios Tireóideos/antagonistas & inibidores , Receptores beta dos Hormônios Tireóideos/metabolismo
3.
Int J Biochem Cell Biol ; 60: 176-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25582751

RESUMO

Uveal melanoma (UM) is the most common form of primary intraocular malignancy in adult and has the tendency to metastasize. BAP1 mutations are frequently found in UM and are associated with a poor prognosis. The role of BAP1 in cell cycle regulation is currently a research highlight, but its underlying mechanism is not well understood. Here, we report that BAP1 knockdown can lead to G1 arrest and is accompanied by a decrease in the expression of S phase genes in OCM1 cells. Furthermore, in chromatin immunoprecipitation experiments, BAP1 could bind to E2F1 responsive promoters and the localization of BAP1 to E2F1-responsive promoters is host cell factor-1 dependent. Moreover, BAP1 knockdown leads to increased H2AK119ub1 levels on E2F responsive promoters. Together, these results provide new insight into the mechanisms of BAP1 in cell cycle regulation.


Assuntos
Movimento Celular/fisiologia , Fator de Transcrição E2F1/metabolismo , Melanoma/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo , Neoplasias Uveais/metabolismo , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Imunoprecipitação da Cromatina , Fator de Transcrição E2F1/genética , Células HEK293 , Humanos , Melanoma/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Neoplasias Uveais/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-23533490

RESUMO

Endothelial dysfunction and oxLDL are believed to be early and critical events in atherogenesis. 6-Shogaol is the major bioactive compound present in Zingiber officinale and possesses the anti-atherosclerotic effect. However, the mechanisms remain poorly understood. The goal of this study was to investigate the effects of 6-shogaol on oxLDL-induced Human umbilical vein endothelial cells (HUVECs) injuries and its possible molecular mechanisms. Hence, we studied the effects of 6-shogaol on cell apoptosis, cellular reactive oxygen species (ROS), NF- κ B activation, Bcl-2 expression, and caspase -3, -8, -9 activities. In addition, E-selectin, MCP-1, and ICAM-1 were determined by ELISA. Our study show that oxLDL increased LOX-1 expression, ROS levels, NF- κ B, caspases-9 and -3 activation and decreased Bcl-2 expression in HUVECs. These alterations were attenuated by 6-shogaol. Cotreatment with 6-shogaol and siRNA of LOX-1 synergistically reduced oxLDL-induced caspases -9, -3 activities and cell apoptosis. Overexpression of LOX-1 attenuated the protection by 6-shogaol and suppressed the effects of 6-shogaol on oxLDL-induced oxidative stress. In addition, oxLDL enhanced the activation of NF- κ B and expression of adhesion molecules. Pretreatment with 6-shogaol, however, exerted significant cytoprotective effects in all events. Our data indicate that 6-shogaol might be a potential natural antiapoptotic agent for the treatment of atherosclerosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA