Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402256, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794863

RESUMO

Sodium (Na)-metal batteries (SMBs) are considered one of the most promising candidates for the large-scale energy storage market owing to their high theoretical capacity (1,166 mAh g-1) and the abundance of Na raw material. However, the limited stability of electrolytes still hindered the application of SMBs. Herein, sulfolane (Sul) and vinylene carbonate (VC) are identified as effective dual additives that can largely stabilize propylene carbonate (PC)-based electrolytes, prevent dendrite growth, and extend the cycle life of SMBs. The cycling stability of the Na/NaNi0.68Mn0.22Co0.1O2 (NaNMC) cell with this dual-additive electrolyte is remarkably enhanced, with a capacity retention of 94% and a Coulombic efficiency (CE) of 99.9% over 600 cycles at a 5 C (750 mA g-1) rate. The superior cycling performance of the cells can be attributed to the homogenous, dense, and thin hybrid solid electrolyte interphase consisting of F- and S-containing species on the surface of both the Na metal anode and the NaNMC cathode by adding dual additives. Such unique interphases can effectively facilitate Na-ion transport kinetics and avoid electrolyte depletion during repeated cycling at a very high rate of 5 C. This electrolyte design is believed to result in further improvements in the performance of SMBs.

2.
J Spinal Cord Med ; : 1-9, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656250

RESUMO

OBJECTIVE: This study aimed to establish a nomogram-based assessment for predicting the risk of hyponatremia after spinal cord injury (SCI). DESIGN: The study is a retrospective single-center study. PARTICIPANTS: SCI patients hospitalized in the First Affiliated Hospital of Guangxi Medical University. SETTING: The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. METHODS: We performed a retrospective clinical study to collect SCI patients hospitalized in the First Affiliated Hospital of Guangxi Medical University from 2016 to 2020. Based on their clinical scores, the SCI patients were grouped as either hyponatremic or non-hyponatremic, SCI patients in 2016-2019 were identified as the training set, and patients in 2020 were identified as the test set. A nomogram was generated, the calibration curve, receiver operating characteristic (ROC) curve, and decision curve analysis (DCA) were used to validate the model. RESULTS: A total of 895 SCI patients were retrieved. After excluding patients with incomplete data, 883 patients were finally included in this study and used to construct the nomograms. The indicators used in the nomogram included sex, completeness of SCI, pneumonia, urinary tract infection, fever, constipation, white blood cell (WBC), albumin and serum Ca2+. These indices were determined by the least absolute shrinkage and selection operator (LASSO) regression analysis. The C-index of the model was 0.81, the area under the curve (AUC) of the training set was 0.82(Cl:0.79-0.85), and the validation set was 0.79(Cl:0.73-0.85). CONCLUSIONS: Nomogram has good predictive ability, sex, completeness of SCI, pneumonia, urinary tract infection, fever, constipation, WBC, albumin and serum Ca2+ were predictors of hyponatremia after SCI.

3.
ACS Nano ; 18(18): 11955-11963, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656985

RESUMO

The performance of all-solid-state lithium batteries (ASSLBs) is significantly impacted by lithium interfacial instability, which originates from the dynamic chemical, morphological, and mechanical changes during deep Li plating and stripping. In this study, we introduce a facile approach to generate a conductive and regenerative solid interface, enhancing both the Li interfacial stability and overall cell performance. The regenerative interface is primarily composed of nanosized lithium iodide (nano-LiI), which originates in situ from the adopted solid-state electrolyte (SSE). During cell operation, the nano-LiI interfacial layer can reversibly diffuse back and forth in synchronization with Li plating and stripping. The interface and dynamic process improve the adhesion and Li+ transport between the Li anode and SSE, facilitating uniform Li plating and stripping. As a result, the metallic Li anode operates stably for over 1000 h at high current densities and even under elevated temperatures. By using metallic Li as the anode directly, we demonstrate stable cycling of all-solid-state Li-sulfur batteries for over 250 cycles at an areal capacity of >2 mA h cm-2 and room temperature. This study offers insights into the design of regenerative and Li+-conductive interfaces to tackle solid interfacial challenges for high-performance ASSLBs.

4.
Nat Energy ; 8(12): 1345-1354, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38249622

RESUMO

The solid-electrolyte interphase (SEI) critically governs the performance of rechargeable batteries. An ideal SEI is expected to be electrically insulative to prevent persistently parasitic reactions between the electrode and the electrolyte and ionically conductive to facilitate Faradaic reactions of the electrode. However, the true nature of the electrical properties of the SEI remains hitherto unclear due to the lack of a direct characterization method. Here we use in situ bias transmission electron microscopy to directly measure the electrical properties of SEIs formed on copper and lithium substrates. We reveal that SEIs show a voltage-dependent differential conductance. A higher rate of differential conductance induces a thicker SEI with an intricate topographic feature, leading to an inferior Coulombic efficiency and cycling stability in Li∣∣Cu and Li∣∣LiNi0.8Mn0.1Co0.1O2 cells. Our work provides insight into the targeted design of the SEI with desired characteristics towards better battery performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA