Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1144823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125206

RESUMO

Introduction: Microorganisms play a critical role in soil biogeochemical cycles, but it is still debated whether they influence soil biogeochemical processes through community composition and diversity or not. This study aims to investigate variation in bacterial community structure across different soils and its correlation to soil multifunctionality. Soil samples were collected from five typical farmland zones along distinct climatic gradients in China. Methods: The high-throughput sequencing (Illumina MiSeq) of 16S rRNA genes was employed to analyze bacterial community composition in each soil sample. Multivariate analysis was used to determine the difference in soil properties, microbial community and functioning, and their interactions. Results: Cluster and discrimination analysis indicated that bacterial community composition was similar in five tested soil samples, but bacterial richness combined with soil enzyme activities and potential nitrification rate (PNR) contributed most to the differentiations of soil samples. Mantel test analysis revealed that bacterial community composition and richness were more significantly shaped by soil nutrient conditions and edaphic variables than bacterial diversity. As for soil multifunctionality, soil microbial community level physiological profiles were little affected by abiotic and biotic factors, while soil enzymes and PNR were also significantly related to bacterial community composition and richness, in addition to soil N and P availability. Conclusion: Cumulatively, soil enzymes' activities and PNR were greatly dependent on bacterial community composition and richness not diversity, which in turn were greatly modified by soil N and P availability. Therefore, in the future it should be considered for the role of fertilization in the modification of bacterial community and the consequent control of nutrient cycling in soil.

2.
Chem Commun (Camb) ; 55(98): 14781-14784, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31755885

RESUMO

The methylene groups surrounding the metal center in a metal-organic framework provide hydrophobic repulsive forces to H2O, resulting in a high catalytic activity (TOF = 73.8 h-1, selectivity of 96%) for photodriven CO2 reduction into CO.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(4): 1031-4, 2014 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25007623

RESUMO

Dihydroeugenol acrylate was synthesized by the reaction of acryloyl chloride (AC) with lignin mode compound dihydroeugenol (DH) in the presence of TEA and characterized by using FTIR, GC/MS, 1H-NMR and GPC. FTIR spectra showed that, after the esterification with acryloyl chloride, the intensity of stretching vibration peak of O-H (centered at 3 495 cm(-1)) of DH was disappeared. At the same time, a new peak appeared at 1 762 cm(-1) which was assigned to ester group. Additionally, the appearance of 1 631 and 981 cm(-1) were attributed to the carbon - carbon double bond confirmed the success in the synthesis of DH-AC. 1H-NMR spectra showed that, after the esterification with acryloyl chloride, the proton signal of O-H at 5.5 ppm was disappeared. Meanwhile, the appearance of three new proton signals at 6.0 ppm, 6.4 and 6.7 ppm, attributed to the vinylic protons, indicated that acryloyl chloride was successfully grafted onto DH. The results further confirmed the structures of the DH-AC. GC-MS results showed the DH-AC had a high purity of 98.63%. GPC results showed that dihydroeugenol acrylate could polymerize in the 1,4-dioxane using a thermal initiator of AIBN (2.0 Wt% of total monomers). The weight average molecular mass (Mw) of the homopolymer is 37 400 g x mol(-1), and the number average molecular mass is 23 400 g x mol(-1)' with a polydispersity index Mw/Mn of 1.60, indicating that the dihydroeugenol acrylate has high polymerization activity. This strategy provides a novel approach for extending the comprehensive utilization of lignin.


Assuntos
Eugenol/análogos & derivados , Lignina , Acrilatos , Dioxanos , Eugenol/síntese química , Peso Molecular , Prótons
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(11): 2940-4, 2013 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-24555356

RESUMO

In order to improve the reaction activity of bioethanol lignin, we investigated the activation of bioethanol lignin by a hydrothermal treatment method. Catalytic hydrothermal treatment of bioethanol lignin was performed at 180 degrees C for 3 h in the presence of alkaline solutions (NaOH, Na2 CO3, KOH and K2 CO3), the change in bioethanol lignin structures was studied comparatively by FTIR, 1H NMR,GPC and elemental analysis. FTIR spectra showed that after alkali hydrothermal treatment, the band at 1 375 cm(-1) attributed to the phenolic hydroxyl groups increased, and the band intensity at 1 116 cm(-1) attributed to the ether bond decreased. On the other hand, the band at 1 597 and 1 511 cm(-1) attributed to aromatic skeletal vibration remained almost unchanged. 1H NMR spectra showed that after alkali hydrothermal treatment, the number of aromatic methoxyl is increased, and based on the increment of the content of phenolic hydroxyl, the catalytic activity can be ranked as follows: KOH > NaOH > K2 CO3 > Na2 CO3. Especially for KOH, the increment of the content of phenolic hydroxyl was 170%, because the ion radius of potassium cation is bigger than sodium cation, so the potassium cations more easily formed cation adducts with lignin. GPC results showed that the molecular weight of alkali hydrothermal treatment lignin decreased and the molecular distribution got wider. Elemental analysis showed that hydrothermal treatment could break the interlinkage between lignin and protein, which can reduce the protein content and increase the purity of lignin, meanwhile, the content of O and H both decreased,while C fell, indicating that the bioethanol lignin had suffered a decarbonylation reaction. This is the most benefit of the lignin as a substitute for phenol.


Assuntos
Biocombustíveis , Lignina/química , Temperatura , Catálise , Peso Molecular , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...