Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Plants (Basel) ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931018

RESUMO

Environmental changes induced by urbanization may significantly alter plant survival strategies, thereby introducing uncertainties in their ability to withstand extreme heat. This study, centered on Jinhua City, distinguished urban, suburban, and rural areas to represent the various intensities of urbanization. It examined the leaf function properties of evergreen and deciduous trees common in these regions, focusing on leaf and branch characteristics. Employing an analysis of variance (ANOVA), principal component analysis (PCA), and path analysis (PA) of the plant functional traits and the climatic factors of each region, this study assessed the impact of urbanization on plant survival strategies. By tracking changes in plant functional traits from June to August, it explored the capacity of plants to acclimate to urban-warming-related heat stress across different urbanization gradients. The findings revealed that leaf thickness (LT) and stomatal size (SS) initially decreased and then increased, whereas specific leaf area (SLA) and leaf tissue density (LTD) first rose and then declined, from rural to urban regions. From June to August, branch wood density (WD), chlorophyll (Chl) content, LTD, and leaf dry matter content (LDMC) increased, whereas SLA and leaf water content (LWC) diminished, in all regions. PCA suggested that there was no significant change in the resource allocation strategy of plants (p > 0.05), with drought tolerance significantly reduced in the suburbs on the gradient of urbanization (p < 0.05). During the summer, with high temperature, plants were predominantly biased towards slow-return, conservative strategies, particularly among evergreen species. Compared to precipitation, PA revealed a significant urban warming effect. During summer, temperature was the main factor influencing resource investment strategy and drought resistance, with a notably stronger impact on the former. The high temperature in summer promoted a conservative survival strategy in plants, and the urbanization effect increased their tolerance to high temperatures.

2.
Crit Rev Food Sci Nutr ; : 1-15, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38841814

RESUMO

Mineral elements including calcium, iron, and zinc play crucial roles in human health. Their deficiency causes public health risk globally. Commercial mineral supplements have limitations; therefore, alternatives with better solubility, bioavailability, and safety are needed. Chelates of food-derived peptides and mineral elements exhibit advantages in terms of stability, absorption rate, and safety. However, low binding efficiency limits their application. Extensive studies have focused on understanding and enhancing the chelating activity of food-derived peptides with mineral elements. This includes obtaining peptides with high chelating activity, elucidating interaction mechanisms, optimizing chelation conditions, and developing techniques to enhance the chelating activity. This review provides a comprehensive theoretical basis for the development and utilization of food-derived peptide-mineral element chelates in the food industry. Efforts to address the challenge of low binding rates between peptides and mineral elements have yielded promising results. Optimization of peptide sources, enzymatic hydrolysis processes, and purification schemes have helped in obtaining peptides with high chelating activity. The understanding of interaction mechanisms has been enhanced through advanced separation techniques and molecular simulation calculations. Optimizing chelation process conditions, including pH and temperature, can help in achieving high binding rates. Methods including phosphorylation modification and ultrasonic treatment can enhance the chelating activity.

3.
Med Sci Monit ; 30: e943666, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850016

RESUMO

BACKGROUND Helicobacter pylori has a high infection rate worldwide, and epidemiological study of H. pylori is important. Artificial intelligence has been widely used in the field of medical research and has become a hotspot in recent years. This paper proposed a prediction model for H. pylori infection based on machine learning in adults. MATERIAL AND METHODS Adult patients were selected as research participants, and information on 30 factors was collected. The chi-square test, mutual information, ReliefF, and information gain were used to screen the feature factors and establish 2 subsets. We constructed an H. pylori infection prediction model based on XGBoost and optimized the model using a grid search by analyzing the correlation between features. The performance of the model was assessed by comparing its accuracy, recall, precision, F1 score, and AUC with those of 4 other classical machine learning methods. RESULTS The model performed better on the part B subset than on the part A subset. Compared with the other 4 machine learning methods, the model had the highest accuracy, recall, F1 score, and AUC. SHAP was used to evaluate the importance of features in the model. It was found that H. pylori infection of family members, living in rural areas, poor washing hands before meals and after using the toilet were risk factors for H. pylori infection. CONCLUSIONS The model proposed in this paper is superior to other models in predicting H. pylori infection and can provide a scientific basis for identifying the population susceptible to H. pylori and preventing H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Aprendizado de Máquina , Humanos , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/epidemiologia , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Risco
4.
Angew Chem Int Ed Engl ; : e202406392, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775364

RESUMO

Though platinum (Pt)-based complexes have been recently exploited as immunogenic cell death (ICD) inducers for activating immunotherapy, the effective activation of sufficient immune responses with minimal side effects in deep-seated tumors remains a formidable challenge. Herein, we propose the first example of a near-infrared (NIR) light-activated and lysosomal targeted Pt(II) metallacycle (1) as a supramolecular ICD inducer. 1 synergistically potentiates immunomodulatory response in deep-seated tumors via multiple-regulated approaches, involving NIR light excitation, boosted reactive oxygen species (ROS) generation, good selectivity between normal and tumor cells, and enhanced tumor penetration/retention capabilities. Specifically, 1 has excellent depth-activated ROS production (~ 7 mm), accompanied by strong anti-diffusion and anti-ROS quenching ability. In vitro experiments demonstrate that 1 exhibits significant cellular uptake and ROS generation in tumor cells as well as respective multicellular tumor spheroids. Based on these advantages, 1 induces a more efficient ICD in an ultralow dose (i.e., 5 µM) compared with the clinical ICD inducer-oxaliplatin (300 µM). In vivo, vaccination experiments further demonstrate that 1 serves as a potent ICD inducer through eliciting CD8+/CD4+ T cell response and Foxp3+ T cell depletion with negligible adverse effects. This study pioneers a promising avenue for safe and effective metal-based ICD agents in immunotherapy.

5.
Biology (Basel) ; 13(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38666875

RESUMO

(1) Background: In aquaculture, chronic stress due to high stocking density impairs animals' welfare and results in declined fishery production with low protein quality. However, most previous studies evaluated the effects of high stocking density on trout in freshwater rather than seawater. (2) Methods: Juvenile trout were reared for 84 days in circular tanks under three stocking densities, including low density ("LD", 9.15 kg/m3), moderate density ("MD", 13.65 kg/m3), and high density ("HD", 27.31 kg/m3) in seawater. The final densities of LD, MD, and HD were 22.00, 32.05 and 52.24 kg/m3, respectively. Growth performance and lipid metabolism were evaluated. (3) Results: Growth performance and feeding efficiency were significantly reduced due to chronic stress under high density in mariculture. The digestive activity of lipids was promoted in the gut of HD fish, while the concentration of triglycerides was decreased in the blood. Furthermore, decreased acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), increased hormone-sensitive lipase (HSL) concentrations, and activated hepatic ß-oxidation processes were observed in trout under HD. Redundancy analysis showed that glycerol and HSL can be used as potential markers to evaluate the growth performance of trout in mariculture. (4) Conclusions: We showed that chronic high stocking density led to negative effects on growth performance, reduced de novo synthesis of fatty acids, and enhanced lipolysis.

6.
Angew Chem Int Ed Engl ; 63(15): e202319966, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38327168

RESUMO

Albeit sonodynamic therapy (SDT) has achieved encouraging progress in microbial sterilization, the scarcity of guidelines for designing highly effective sonosensitizers and the intricate biofilm microenvironment (BME), substantially hamper the therapeutic efficacy against biofilm infections. To address the bottlenecks, we innovatively design a Ru(II) metallacycle-based sonosensitizer/sonocatalyst (named Ru-A3-TTD) to enhance the potency of sonotherapy by employing molecular engineering strategies tailored to BME. Our approach involves augmenting Ru-A3-TTD's production of ultrasonic-triggered reactive oxygen species (ROS), surpassing the performance of commercial sonosensitizers, through a straightforward but potent π-expansion approach. Within the BME, Ru-A3-TTD synergistically amplifies sonotherapeutic efficacy via triple-modulated approaches: (i) effective alleviation of hypoxia, leading to increased ROS generation, (ii) disruption of the antioxidant defense system, which shields ROS from glutathione consumption, and (iii) enhanced biofilm penetration, enabling ROS production in deep sites. Notably, Ru-A3-TTD sono-catalytically oxidizes NADPH, a critical coenzyme involved in antioxidant defenses. Consequently, Ru-A3-TTD demonstrates superior biofilm eradication potency against multidrug-resistant Escherichia coli compared to conventional clinical antibiotics, both in vitro and in vivo. To our knowledge, this study represents the pioneering instance of a supramolecular sonosensitizer/sonocatalyst. It provides valuable insights into the structure-activity relationship of sonosensitizers and paves a promising pathway for the treatment of biofilm infections.


Assuntos
Antioxidantes , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes , Coenzimas , Escherichia coli , Linhagem Celular Tumoral , Microambiente Tumoral
7.
Biol Trace Elem Res ; 202(4): 1767-1775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37438547

RESUMO

Zinc is an essential micronutrient for organisms involved in regulating various biological processes. This study evaluated the effects of dietary zinc on growth performance, digestive enzyme activities, antioxidant status, and immune responses of sea cucumber Apostichopus japonicus. Five experimental diets were formulated with graded levels of zinc (0, 20, 40, 60, and 80 mg/kg, respectively), and the actual dietary zinc values were 31.4, 51.0, 68.2, 91.9, and 110.8 mg/kg diet, respectively. Sea cucumbers were fed with diets for 2 months. The results showed the growth performance, amylase, and trypsin activities of sea cucumber increased significantly with zinc supplementation, and the best growth performance and enzyme activities were observed at 40 mg/kg zinc diet. Zinc supplementation significantly increased activities of superoxide dismutase, catalase, anti-superoxide anion, and inhibiting hydroxyl radical, while significantly reduced the malondialdehyde content. Furthermore, the higher zinc supplementation levels resulted in significantly upregulated immune-related genes of hsp90, p105, rel, and lsz, suggesting that excessive zinc caused oxidative stress. The broken-line regression analysis of specific growth rate indicated dietary zinc requirement in juvenile sea cucumber was ~ 66.3 mg/kg diet. Overall, dietary zinc contributes to the growth and immune resistance of juvenile sea cucumber, and our study will provide insights into the rational use of dietary zinc in aquaculture.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais/análise , Imunidade Inata , Dieta , Zinco/farmacologia , Ração Animal/análise
8.
Environ Sci Pollut Res Int ; 31(4): 5013-5031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147259

RESUMO

An increasing amount of sewage has been discharged into water bodies in the progression of industrialization and urbanization, causing serious water pollution. Meanwhile, the increase of nutrients in the water induces water eutrophication and rapid growth of algae. Photocatalysis is a common technique for algal inhibition and sterilization. To improve the utilization of visible light and the conversion efficiency of solar energy, more organic photocatalytic materials have been gradually developed. In addition to ultraviolet light, partial infrared light and visible light could also be used by organic photocatalysts compared with inorganic photocatalysts. Simultaneously, organic photocatalysts also exhibit favorable stability. Most organic photocatalysts can maintain a high degradation rate for algae and bacteria after several cycles. There are various organic semiconductors, mainly including small organic molecules, such as perylene diimide (PDI), porphyrin (TCPP), and new carbon materials (fullerene (C60), graphene (GO), and carbon nanotubes (CNT)), and large organic polymers, such as graphite phase carbon nitride (g-C3N4), polypyrrole (PPy), polythiophene (PTH), polyaniline (PANI), and polyimide (PI). In this review, the classification and synthesis methods of organic photocatalytic materials were elucidated. It was demonstrated that the full visible spectral response (400-750 nm) could be stimulated by modifying organic photocatalysts. Moreover, some problems were summarized based on the research status related to algae and bacteria, and corresponding suggestions were also provided for the development of organic photocatalytic materials.


Assuntos
Nanotubos de Carbono , Polímeros , Pirróis , Luz , Esterilização , Água , Catálise
9.
J Hazard Mater ; 465: 133273, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38113729

RESUMO

Photocatalytic technology showed significant potential for addressing the issue of cyanobacterial blooms resulting from eutrophication in bodies of water. However, the traditional powder materials were easy to agglomerate and settle, which led to the decrease of photocatalytic activity. The emergence of floating photocatalyst was important for the practical application of controlling harmful algal blooms. This study was based on the efficient powder photocatalyst bismuth oxide composite copper-metal organic framework (Bi2O3 @Cu-MOF), which was successfully loaded onto melamine sponge (MS) by sodium alginate immobilization to prepare a floating photocatalyst MS/Bi2O3 @Cu-MOF for the inactivation of Microcystis aeruginosa (M. aeruginosa) under visible light. When the capacity was 0.4 g (CA0.4), MS/Bi2O3 @Cu-MOF showed good photocatalytic activity, and the inactivation rate of M. aeruginosa reached 74.462% after 120 h. MS/Bi2O3 @Cu-MOF-CA0.4 showed a large specific surface area of 30.490 m2/g and an average pore size of 22.862 nm, belonging to mesoporous materials. After 120 h of treatment, the content of soluble protein in the MS/Bi2O3 @Cu-MOF-CA0.4 treatment group decreased to 0.365 mg/L, the content of chlorophyll a (chla) was 0.023 mg/L, the content of malondialdehyde (MDA) increased to 3.168 nmol/mgprot, and the contents of various antioxidant enzymes experienced drastic changes, first increasing and then decreasing. The photocatalytic process generated·OH and·O2-, which played key role in inactivating the algae cells. Additionally, the release of Cu2+ and adsorption of the material also contributed to the process.


Assuntos
Estruturas Metalorgânicas , Microcystis , Triazinas , Cobre/metabolismo , Microcystis/metabolismo , Estruturas Metalorgânicas/metabolismo , Clorofila A , Seda/metabolismo , Pós/metabolismo , Bismuto , Proliferação Nociva de Algas
10.
Structure ; 31(12): 1604-1615.e8, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37794595

RESUMO

4-Hydroxyphenylpyruvate dioxygenase (HPPD) has attracted increasing attention as a target for treating type I tyrosinemia and other diseases with defects in tyrosine catabolism. Only one commercial drug, 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3-cyclohexanedione (NTBC), clinically treat type I tyrosinemia, but show some severe side effects in clinical application. Here, we determined the structure of human HPPD-NTBC complex, and developed new pyrazole-benzothiadiazole 2,2-dioxide hybrids from the binding of NTBC. These compounds showed improved inhibition against human HPPD, among which compound a10 was the most active candidate. The Absorption Distribution Metabolism Excretion Toxicity (ADMET) predicted properties suggested that a10 had good druggability, and was with lower toxicity than NTBC. The structure comparison between inhibitor-bound and ligand-free form human HPPD showed a large conformational change of the C-terminal helix. Furthermore, the loop 1 and α7 helix were found adopting different conformations to assist the gating of the cavity, which explains the gating mechanism of human HPPD.


Assuntos
Herbicidas , Tiadiazóis , Tirosinemias , Humanos , Tirosinemias/tratamento farmacológico , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Pirazóis/farmacologia , Inibidores Enzimáticos/farmacologia
11.
Angew Chem Int Ed Engl ; 62(47): e202308827, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37802975

RESUMO

Enzymatic catalysis with high efficiency allows them a great prospect in metabolite monitoring in living cells. However, complex tumor microenvironments, such as acidity, H2 O2 , and hypoxia, are bound to disturb catalytic reactions for misleading results. Here, we report a spatially compartmentalized artificial organelle to correct intratumoral glucose analysis, where the zeolitic imidazolate framework-8 immobilized glucose oxidase-horseradish peroxidase cascade core and catalase-directed shell act as signal transduction and guarding rooms respectively. The acid-digested core and stable shell provide appropriate spaces to boost biocatalytic efficiency with good tolerability. Notably, the endogenous H2 O2 is in situ decomposed to O2 by catalase, which not only overcomes the interference in signal output but also alleviates the hypoxic states to maximize glucose oxidation. The marked protective effect and biocompatibility render artificial organelles to correct the signal transduction for dynamic monitoring glucose in vitro and in vivo, achieving our goal of accurate intratumoral metabolite analysis.


Assuntos
Células Artificiais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/metabolismo , Glucose/análise , Catalase/metabolismo , Oxirredução , Glucose Oxidase/metabolismo
12.
Chemosphere ; 343: 140276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758086

RESUMO

Photocatalytic technology for inactivating harmful algae has shown great research potential, in previous work, a kind of non-noble metal modified TiO2 loading onto copper metal organic framework (SNP-TiO2@Cu-MOF) was proved to show high removal efficiency against Karenia mikimotoi (K. mikimotoi). However, the recovery problem of powdered photocatalysts and its potential ecological hazards were still existed. In order to solve this, this study selected four macro-floating carriers and loaded photocatalyst on their surface. The floating photocatalyst with luffa sponge and expanded perlite as carriers were prepared by hydrothermal synthesis, and the floating photocatalyst with melamine sponge and polyurethane sponge as carriers were prepared by sodium alginate fixation method. The photocatalyst was firmly supported on the carriers, and the octahedral structure of SNP-TiO2@Cu-MOF photocatalyst could be well retained by hydrothermal synthesis. The advantages of sodium alginate fixation method were simple preparation process and low cost. The specific surface area of melamine foam photocatalyst (MF-P) was the highest, 28.47 m2/g, and the algae inactivation rate was also the best, which was 98.68% in 6 h. The MF-P group showed a decrease of 81.8% in soluble protein content and 81.4% in chlorophyll-a content of K. mikimotoi after 1 h of photocatalysis, respectively. The four photocatalysts showed good recyclability, and especially in MF-P group. The inactivation efficiency was still as high as 94.12% after four experiments. The floating photocatalyst would lay the foundation for further application of photocatalytic materials for algae removal.

13.
Chem Soc Rev ; 52(15): 5340-5342, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37435885

RESUMO

Correction for 'Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications' by Chonglu Li et al., Chem. Soc. Rev., 2023, 52, 4392-4442, https://doi.org/10.1039/D3CS00227F.

14.
Chem Soc Rev ; 52(13): 4392-4442, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37334831

RESUMO

Metal agents have made incredible strides in preclinical research and clinical applications in recent years, but their short emission/absorption wavelengths continue to be a barrier to their distribution, therapeutic action, visual tracking, and efficacy evaluation. Nowadays, the near-infrared window (NIR, 650-1700 nm) provides a more accurate imaging and treatment option. Thus, there has been ongoing research focusing on developing multifunctional NIR metal agents for imaging and therapy that have deeper tissue penetration. The design, characteristics, bioimaging, and therapy of NIR metal agents are covered in this overview of papers and reports published to date. To start with, we focus on describing the structure, design strategies, and photophysical properties of metal agents from the NIR-I (650-1000 nm) to NIR-II (1000-1700 nm) region, in order of molecular metal complexes (MMCs), metal-organic complexes (MOCs), and metal-organic frameworks (MOFs). Next, the biomedical applications brought by these superior photophysical and chemical properties for more accurate imaging and therapy are discussed. Finally, we explore the challenges and prospects of each type of NIR metal agent for future biomedical research and clinical translation.


Assuntos
Diagnóstico por Imagem , Medicina de Precisão , Metais , Corantes Fluorescentes/química , Imagem Óptica/métodos
15.
Science ; 380(6648): 972-979, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37262147

RESUMO

The suprachiasmatic nucleus (SCN) drives circadian clock coherence through intercellular coupling, which is resistant to environmental perturbations. We report that primary cilia are required for intercellular coupling among SCN neurons to maintain the robustness of the internal clock in mice. Cilia in neuromedin S-producing (NMS) neurons exhibit pronounced circadian rhythmicity in abundance and length. Genetic ablation of ciliogenesis in NMS neurons enabled a rapid phase shift of the internal clock under jet-lag conditions. The circadian rhythms of individual neurons in cilia-deficient SCN slices lost their coherence after external perturbations. Rhythmic cilia changes drive oscillations of Sonic Hedgehog (Shh) signaling and clock gene expression. Inactivation of Shh signaling in NMS neurons phenocopied the effects of cilia ablation. Thus, cilia-Shh signaling in the SCN aids intercellular coupling.


Assuntos
Cílios , Relógios Circadianos , Ritmo Circadiano , Proteínas Hedgehog , Neurônios do Núcleo Supraquiasmático , Animais , Camundongos , Cílios/metabolismo , Cílios/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neurônios do Núcleo Supraquiasmático/fisiologia , Transdução de Sinais , Regulação da Expressão Gênica , Camundongos Transgênicos
16.
Bioresour Technol ; 381: 129139, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169200

RESUMO

Trace N-doped manganese dioxide (MnO2) nanoparticles were attached to NiAl-layered double hydroxide (LDH) nano sheets by a simple two-step hydrothermal reaction, and N-MnO2@NiAl-LDH was successfully prepared as cathode catalyst of microbial fuel cell (MFC). N-MnO2@NiAl-LDH was Ping-pong chrysanthemum-like structure formed by overlapping lamellar structures, with spherical MnO2 particles attached on. The unique Ping-pong chrysanthemum-like structure and pore size distribution provided large number of electrochemical active sites. The recombination of trace N and MnO2 reduced the charge transfer resistance, accelerated the electron transfer rate, and N-MnO2@NiAl-LDH showed high oxygen reduction reaction (ORR) capability. The maximum output power density of N-MnO2@NiAl-LDH-MFC was 698 mW/m2, about 4.59 times of NiAl-LDH (152.1 mW/m2). The maximum voltage was about 320 mV, and the stability was good for about 7 d. This would provide technical reference for the utilization of cathode catalyst for fuel cells.


Assuntos
Fontes de Energia Bioelétrica , Óxidos , Óxidos/química , Compostos de Manganês/química , Eletrodos , Hidróxidos
17.
J Ethnopharmacol ; 314: 116532, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37149071

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Gardenia jasminoides Ellis is a traditional Chinese medicine that has been used for treatment of various diseases, including atherosclerosis by clearing heat and detoxication. Geniposide is considered as the effective compounds responsible for the therapeutic efficacy of Gardenia jasminoides Ellis against atherosclerosis. AIM OF THE STUDY: To investigate the effect of geniposide on atherosclerosis burden and plaque macrophage polarization, with focus on its potential impact on CXCL14 expression by perivascular adipose tissue (PVAT). MATERIALS AND METHODS: ApoE-/- mice fed a western diet (WD) were used to model atherosclerosis. In vitro cultures of mouse 3T3-L1 preadipocytes and RAW264.7 macrophages were used for molecular assays. RESULTS: The results revealed that geniposide treatment reduced atherosclerotic lesions in ApoE-/- mice, and this effect was correlated with increased M2 and decreased M1 polarization of plaque macrophages. Of note, geniposide increased the expression of CXCL14 in PVAT, and both the anti-atherosclerotic effect of geniposide, as well as its regulatory influence on macrophage polarization, were abrogated upon in vivo CXCL14 knockdown. In line with these findings, exposure to conditioned medium from geniposide-treated 3T3-L1 adipocytes (or to recombinant CXCL14 protein) enhanced M2 polarization in interleukin-4 (IL-4) treated RAW264.7 macrophages, and this effect was negated after CXCL14 silencing in 3T3-L1 cells. CONCLUSION: In summary, our findings suggest that geniposide protects ApoE-/- mice against WD-induced atherosclerosis by inducing M2 polarization of plaque macrophages via enhanced expression of CXCL14 in PVAT. These data provide novel insights into PVAT paracrine function in atherosclerosis and reaffirm geniposide as a therapeutic drug candidate for atherosclerosis treatment.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Adipócitos/metabolismo , Macrófagos/metabolismo , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL , Quimiocinas CXC/metabolismo , Quimiocinas CXC/uso terapêutico
18.
Chem Sci ; 14(11): 2901-2909, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937588

RESUMO

Although metallacycle-based photosensitizers have attracted increasing attention in biomedicine, their clinical application has been hindered by their inherent dark toxicity and unsatisfactory phototherapeutic efficiency. Herein, we employ a π-expansion strategy for ruthenium acceptors to develop a series of Ru(ii) metallacycles (Ru1-Ru4), while simultaneously reducing dark toxicity and enhancing phototoxicity, thus obtaining a high phototoxicity index (PI). These metallacycles enable deep-tissue (∼7 mm) fluorescence imaging and reactive oxygen species (ROS) production and exhibit remarkable anti-tumor activity even under hypoxic conditions. Notably, Ru4 has the lowest dark toxicity, highest ROS generation ability and an optimal PI (∼146). Theoretical calculations verify that Ru4 exhibits the largest steric bulk and the lowest singlet-triplet energy gap (ΔE ST, 0.62 eV). In vivo studies confirm that Ru4 allows for effective and safe phototherapy against A549 tumors. This work thus is expected to open a new avenue for the design of high-performance metal-based photosensitizers for potential clinical applications.

19.
J Hazard Mater ; 442: 130059, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179626

RESUMO

In this study, the SNP-TiO2@Cu-MOF composite was prepared successfully by loading non-noble metal modified TiO2 (SNP-TiO2) on the surface of copper metal organic skeleton (Cu-MOF), and compared the inactivation efficiency of different photocatalysts to Karenia mikimotoi (K. mikimotoi) under visible light. The obtained photocatalyst had the characteristic crystal faces of Cu-MOF and SNP- TiO2, and contained functional groups such as Cu-O, -COOH, N-O, P-O, etc., which indicated the structural stability of the photocatalyst. The band gap of SNP-TiO2@Cu-MOF composite was 2.82 eV, and it had great light absorption ability in visible light region. It was proved to be a mesoporous adsorption material, which had a huge specific surface area (245 m2/g). Compared with other photocatalysts, SNP-TiO2@Cu-MOF composite showed the strongest photocatalytic activity. When the concentration of composite material was set to 100 mg/L and the exposure time was 6 h, the visible light photocatalytic inactivation efficiency of K. mikimotoi was 93.75 %. By measuring various metabolic indexes of K. mikimotoi under the action of different photocatalysts for 1 h, it was confirmed that cell inactivation was due to the increased membrane permeability and degradation of photosynthetic pigments and main life proteins. This research showed that SNP-TiO2@Cu-MOF composite material was full of great potential and application prospect in controlling the outbreak of eutrophication.


Assuntos
Cobre , Estruturas Metalorgânicas , Cobre/química , Catálise , Luz
20.
J Environ Manage ; 328: 116998, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36516705

RESUMO

Soil Phosphorous (P) availability is a limiting factor for plant growth and regulates biological metabolism in plantation ecosystems. The effect of variations in soil microbial P cycling potential on the availability of soil P during succession in plantation ecosystems is unclear. In this study, a metagenomics approach was used to explore variations in the composition and diversity of microbial P genes along a 45-year recovery sequence of Robinia pseudoacacia on the Loess Plateau, as well soil properties were measured. Our results showed that the diversity of P cycling genes (inorganic P solubilization and organic P mineralization genes) increased significantly after afforestation, and the community composition showed clear differences. The gcd and ppx genes were dominant in inorganic P transformation, whereas phnM gene dominated the transformation of organic P. The abundance of genes involved in inorganic P solubilization and organic P mineralization was significantly positively correlated with P availability, particularly for phnM, gcd, ppx, and phnI genes, corresponding to the phyla Gemmatimonadetes, Acidobacteria, Bacteroidetes, and Planctomycetes. The critical drivers of the microbial main genes of soil P cycling were available P (AP) and total N (TN) in soil. Overall, these findings highlight afforestation-induced increases in microbial P cycling genes enhanced soil P availability. and help to better understand how microbial growth metabolism caused by vegetation restoration in ecologically fragile areas affects the soil P cycling.


Assuntos
Ecossistema , Robinia , Solo , Microbiologia do Solo , Bactérias/genética , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...