Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell Mol Life Sci ; 81(1): 82, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340178

RESUMO

Interaction between programmed death-1 (PD-1) ligand 1 (PD-L1) on tumor cells and PD-1 on T cells allows tumor cells to evade T cell-mediated immune surveillance. Strategies targeting PD-1/PD-L1 have shown clinical benefits in a variety of cancers. However, limited response rates in hepatocellular carcinoma (HCC) have prompted us to investigate the molecular regulation of PD-L1. Here, we identify B cell lymphoma-2-associated transcription factor 1 (BCLAF1) as a key PD-L1 regulator in HCC. Specifically, BCLAF1 interacts with SPOP, an E3 ligase that mediates the ubiquitination and degradation of PD-L1, thereby competitively inhibiting SPOP-PD-L1 interaction and subsequent ubiquitination and degradation of PD-L1. Furthermore, we determined an SPOP-binding consensus (SBC) motif mediating the BCLAF1-SPOP interaction on BCLAF1 protein and mutation of BCLAF1-SBC motif disrupts the regulation of the SPOP-PD-L1 axis. In addition, BCLAF1 expression was positively correlated with PD-L1 expression and negatively correlated with biomarkers of T cell activation, including CD3 and CD8, as well as with the level of immune cell infiltration in HCC tissues. Besides, BCLAF1 depletion leads to a significant reduction of PD-L1 expression in vitro, and this reduction of PD-L1 promoted T cell-mediated cytotoxicity. Notably, overexpression of BCLAF1 sensitized tumor cells to checkpoint therapy in an in vitro HCC cells-Jurkat cells co-culture model, whereas BCLAF1-SBC mutant decreased tumor cell sensitivity to checkpoint therapy, suggesting that BCLAF1 and its SBC motif serve as a novel therapeutic target for enhancing anti-tumor immunity in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Neoplasias Hepáticas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptor de Morte Celular Programada 1 , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor , Evasão da Resposta Imune/genética
2.
BMC Genomics ; 25(1): 149, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321384

RESUMO

BACKGROUND: The mediator complex subunits (MED) constitutes a multiprotein complex, with each subunit intricately involved in crucial aspects of plant growth, development, and responses to stress. Nevertheless, scant reports pertain to the VunMED gene within the context of asparagus bean (Vigna unguiculata ssp. sesquipedialis). Establishing the identification and exploring the responsiveness of VunMED to cold stress forms a robust foundation for the cultivation of cold-tolerant asparagus bean cultivars. RESULTS: Within this study, a comprehensive genome-wide identification of VunMED genes was executed in the asparagus bean cultivar 'Ningjiang3', resulting in the discovery of 36 distinct VunMED genes. A phylogenetic analysis encompassing 232 MED genes from diverse species, including Arabidopsis, tomatoes, soybeans, mung beans, cowpeas, and asparagus beans, underscored the highly conserved nature of MED gene sequences. Throughout evolutionary processes, each VunMED gene underwent purification and neutral selection, with the exception of VunMED19a. Notably, VunMED9/10b/12/13/17/23 exhibited structural variations discernible across four cowpea species. Divergent patterns of temporal and spatial expression were evident among VunMED genes, with a prominent role attributed to most genes during early fruit development. Additionally, an analysis of promoter cis-acting elements was performed, followed by qRT-PCR assessments on roots, stems, and leaves to gauge relative expression after exposure to cold stress and subsequent recovery. Both treatments induced transcriptional alterations in VunMED genes, with particularly pronounced effects observed in root-based genes following cold stress. Elucidating the interrelationships between subunits involved a preliminary understanding facilitated by correlation and principal component analyses. CONCLUSIONS: This study elucidates the pivotal contribution of VunMED genes to the growth, development, and response to cold stress in asparagus beans. Furthermore, it offers a valuable point of reference regarding the individual roles of MED subunits.


Assuntos
Fabaceae , Vigna , Vigna/genética , Filogenia , Resposta ao Choque Frio , Complexo Mediador/genética , Fabaceae/genética
3.
Aging (Albany NY) ; 16(3): 2077-2089, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38126998

RESUMO

The beneficial effects of probiotics have been studied in inflammatory bowel disease, nonalcoholic steatohepatitis, and alcoholic liver disease (ALD). Probiotic supplements are safer and more effective; however, their potential mechanisms are unclear. An objective of the current study was to examine the effects of extracellular products of Lactobacillus plantarum on acute alcoholic liver injury. Mice on a standard chow diet were supplemented with Lactobacillus plantarum ST-III culture supernatant (LP-cs) for two weeks and administered alcohol at 6 g/kg body weight by gavage. Alcohol-induced liver injury was assessed by measuring plasma alanine aminotransferase activity levels and triglyceride content determined liver steatosis. Intestinal damage and tight junctions were assessed using histochemical staining. LP-cs significantly inhibited alcohol-induced fat accumulation, inflammation, and apoptosis by inhibiting oxidative stress and endoplasmic reticulum stress. LP-cs significantly inhibited alcohol-induced intestinal injury and endotoxemia. These findings suggest that LP-cs alleviates acute alcohol-induced liver damage by inhibiting oxidative stress and endoplasmic reticulum stress via one mechanism and suppressing alcohol-induced increased intestinal permeability and endotoxemia via another mechanism. LP-cs supplements are a novel strategy for ALD prevention and treatment.


Assuntos
Endotoxemia , Lactobacillus plantarum , Hepatopatias Alcoólicas , Camundongos , Animais , Fígado , Etanol/toxicidade , Hepatopatias Alcoólicas/prevenção & controle
4.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921519

RESUMO

Microchannel plate (MCP) photomultiplier tubes (PMTs) are frequently used in experimental diagnostics, where they are operated in single-pulse current measurement mode. However, considering the significant amplitude fluctuations in the measured signal, the resulting output signal from the MCP-PMT is inevitably distorted by gain saturation. Therefore, understanding the correlation between the MCP-PMT output signal and gain saturation is critical in assessing the extent of output signal distortion and determining the MCP-PMT saturation level. This knowledge allows for a more precise assessment of the input signal's features. In this paper, we present an experimental method for restoring the initial waveform from the saturated MCP-PMT signal. To correct the amplitude-drop caused by gain saturation, our technique involves calibrating the MCP-PMT's relative gain as a function of the accumulated output charge using a square-wave light source. We then applied this approach to restore a ∼500 ns saturated pulse from a double-layer 10 mm diameter MCP-PMT. The restored signal showed a deviation of less than 6% from the reference waveform, which validates the effectiveness of the technique.

5.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685996

RESUMO

Low-temperature stress is a key factor limiting the yield and quality of the common bean. 5-aminolevulinic acid (5-ALA), an antioxidant in plants, has been shown to modulate plant cold stress responses. However, the molecular mechanisms of 5-ALA-induced physiological and chemical changes in common bean seedlings under cold stress remains unknown. This study explored the physiological and transcriptome changes of common bean seedlings in response to cold stress after 5-ALA pretreatment. Physiological results showed that exogenous 5-ALA promotes the growth of common bean plants under cold stress, increases the activity of antioxidant enzymes (superoxide dismutase: 23.8%; peroxidase: 10.71%; catalase: 9.09%) and proline content (24.24%), decreases the relative conductivity (23.83%), malondialdehyde (33.65%), and active oxygen content, and alleviates the damage caused by cold to common bean seedlings. Transcriptome analysis revealed that 214 differentially expressed genes (DEGs) participate in response to cold stress. The DEGs are mainly concentrated in indole alkaloid biosynthesis, carotenoid biosynthesis, porphyrin, and chlorophyll metabolism. It is evident that exogenous 5-ALA alters the expression of genes associated with porphyrin and chlorophyll metabolism, as well as the plant hormone signal transduction pathway, which helps to maintain the energy supply and metabolic homeostasis under low-temperature stress. The results reveal the effect that applying exogenous 5-ALA has on the cold tolerance of the common bean and the molecular mechanism of its response to cold tolerance, which provides a theoretical basis for exploring and improving plant tolerance to low temperatures.


Assuntos
Phaseolus , Porfirinas , Ácido Aminolevulínico , Plântula/genética , Temperatura , Antioxidantes , Hormônios , Clorofila
6.
J Clin Lab Anal ; 37(11-12): e24933, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37387262

RESUMO

BACKGROUND: Previous studies suggest that alcohol dependence is associated with increased risk of depression. The occurrence of depressive symptoms is related to polymorphisms in various genetic regions. This study aimed to investigate the interaction of RETN gene polymorphisms (rs1477341, rs3745368) with alcohol dependence on depressive symptoms in adult male during acute alcohol withdrawal. METHODS: A total of 429 male adults were recruited in this study. Alcohol dependence was assessed using the Michigan alcoholism screening test (MAST). Depression was assessed using the 20-item self-rating depression scale (SDS). Hierarchical regression analysis was used to evaluate the interaction between genes and alcohol dependence on depression. Region of significance (ROS) test was used to explain the interaction effect. The strong and weak forms of the differential susceptibility and diathesis models were used to determine which fits the data better. RESULTS: Our results showed that MAST scores were significantly positively associated with SDS scores (r = 0.23, p < 0.01) in alcohol-dependent patients during alcohol withdrawal. The interaction between genotype and alcohol dependence was significant (ß = -0.14, p < 0.05) in a strong diathesis-stress model. Susceptibility for depression symptoms was associated with alcohol dependence in RETN rs1477341 A carriers. Specifically, those that showed more alcohol dependence and the A allele of RETN rs1477341 exhibited more depression symptoms. However, RETN rs3745368 had no significant interaction with alcohol dependence. CONCLUSIONS: The A allele of RETN rs1477341 may correlate with susceptibility to depression symptoms in alcohol-dependent individuals during acute alcohol withdrawal.


Assuntos
Alcoolismo , Síndrome de Abstinência a Substâncias , Adulto , Humanos , Masculino , Alcoolismo/complicações , Alcoolismo/genética , Depressão/epidemiologia , Depressão/genética , Suscetibilidade a Doenças , Polimorfismo Genético , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Resistina/genética
7.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902443

RESUMO

Spermidine synthase (SPDS) is a key enzyme in the polyamine anabolic pathway. SPDS genes help regulate plant response to environmental stresses, but their roles in pepper remain unclear. In this study, we identified and cloned a SPDS gene from pepper (Capsicum annuum L.), named CaSPDS (LOC107847831). Bioinformatics analysis indicated that CaSPDS contains two highly conserved domains: an SPDS tetramerisation domain and a spermine/SPDS domain. Quantitative reverse-transcription polymerase chain reaction results showed that CaSPDS was highly expressed in the stems, flowers, and mature fruits of pepper and was rapidly induced by cold stress. The function of CaSPDS in cold stress response was studied by silencing and overexpressing it in pepper and Arabidopsis, respectively. Cold injury was more serious and reactive oxygen species levels were greater in the CaSPDS-silenced seedlings than in the wild-type (WT) seedlings after cold treatment. Compared with the WT plants, the CaSPDS-overexpression Arabidopsis plants were more tolerant to cold stress and showed higher antioxidant enzyme activities, spermidine content, and cold-responsive gene (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1) expression. These results indicate that CaSPDS plays important roles in cold stress response and is valuable in molecular breeding to enhance the cold tolerance of pepper.


Assuntos
Arabidopsis , Capsicum , Resposta ao Choque Frio , Capsicum/genética , Espermidina Sintase/genética , Espermidina Sintase/metabolismo , Arabidopsis/genética , Estresse Fisiológico/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
8.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987004

RESUMO

Low-temperature stress in early spring seriously affects the growth and development of cowpea seedlings. To study the alleviative effect of the exogenous substances nitric oxide (NO) and glutathione (GSH) on cowpea (Vigna unguiculata (Linn.) Walp.) seedlings under 8 °C low-temperature stress, 200 µmol·L-1 NO and 5 mmol·L-1 GSH were sprayed on cowpea seedlings whose second true leaf was about to unfold to enhance the tolerance of cowpea seedlings to low temperature. Spraying NO and GSH can eliminate excess superoxide radicals (O2-) and hydrogen peroxide (H2O2) to varying degrees, reduce the content of malondialdehyde and relative conductivity, delay the degradation of photosynthetic pigments, increase the content of osmotic regulating substances such as soluble sugar, soluble protein, and proline, and improve the activity of antioxidant enzymes such as superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase. This study revealed that the mixed use of NO and GSH played an important role in alleviating low temperature stress, and the effect of spraying NO alone was better than that of spraying GSH.

9.
Virol J ; 19(1): 212, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494863

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus and its variants, has posed unprecedented challenges worldwide. Existing vaccines have limited effectiveness against SARS-CoV-2 variants. Therefore, novel vaccines to match mutated viral lineages by providing long-term protective immunity are urgently needed. We designed a recombinant adeno-associated virus 5 (rAAV5)-based vaccine (rAAV-COVID-19) by using the SARS-CoV-2 spike protein receptor binding domain (RBD-plus) sequence with both single-stranded (ssAAV5) and self-complementary (scAAV5) delivery vectors and found that it provides excellent protection from SARS-CoV-2 infection. A single-dose vaccination in mice induced a robust immune response; induced neutralizing antibody (NA) titers were maintained at a peak level of over 1:1024 more than a year post-injection and were accompanied by functional T-cell responses. Importantly, both ssAAV- and scAAV-based RBD-plus vaccines produced high levels of serum NAs against the circulating SARS-CoV-2 variants, including Alpha, Beta, Gamma and Delta. A SARS-CoV-2 virus challenge showed that the ssAAV5-RBD-plus vaccine protected both young and old mice from SARS-CoV-2 infection in the upper and lower respiratory tracts. Whole genome sequencing demonstrated that AAV vector DNA sequences were not found in the genomes of vaccinated mice one year after vaccination, demonstrating vaccine safety. These results suggest that the rAAV5-based vaccine is safe and effective against SARS-CoV-2 and several variants as it provides long-term protective immunity. This novel vaccine has a significant potential for development into a human prophylactic vaccination to help end the global pandemic.


Assuntos
COVID-19 , Parvovirinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Pandemias , Vacinas Sintéticas/genética , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
10.
J Clin Lab Anal ; 36(12): e24793, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36447383

RESUMO

BACKGROUND: The intake of Gynura segetum, a traditional Chinese medicine, may be induce hepatic sinusoidal obstruction syndrome (HSOS). It has a high mortality rate based on the severity of the disease and the absence of therapeutic effectiveness. Therefore, the current study was designed to investigate the effects of bicyclol on HSOS induced by Gynura segetum and the potential molecular mechanisms. METHODS: Gynura segetum (30 g/kg) was administered for 4 weeks in the model group, while the bicyclol pretreatment group received bicyclol (200 mg/kg) administration. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol (CHO), triglyceride (TG), and liver histological assays were detected to assess HSOS. The gene expressions of cytochrome P450 (CYP450) isozymes were quantified by real-time PCR. Moreover, hepatocellular apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, then apoptosis and autophagy-related markers were determined using Western blot. RESULTS: As a result, bicyclol pretreatment is notably protected against Gynura segetum-induced HSOS, as observed by reducing serum ALT levels, inhibiting the reduction in CHO and TG levels, and alleviating the histopathological changes. Bicyclol pretreatment inhibited the changes in mRNA levels of CYP450 isozymes (including the increase in CYP2a5 and decrease in CYP2b10, 2c29, 2c37, 3a11, and 7b1). In addition, the upregulation of Bcl-2 and the downregulation of LC3-II/LC3-I proteins expression in HSOS were inhibited with bicyclol pretreatment. CONCLUSION: Bicyclol exerted a protective effect against HSOS induced by Gynura segetum, which could be attributed to the regulated expressions of CYP450 isozymes and alleviated the downregulation of autophagy.


Assuntos
Compostos de Bifenilo , Hepatopatia Veno-Oclusiva , Humanos , Colesterol , Hepatopatia Veno-Oclusiva/induzido quimicamente , Hepatopatia Veno-Oclusiva/tratamento farmacológico , Hepatopatia Veno-Oclusiva/metabolismo , Isoenzimas/metabolismo , Fígado/metabolismo , Compostos de Bifenilo/uso terapêutico , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Medicamentos de Ervas Chinesas/efeitos adversos
11.
J Gastrointest Oncol ; 13(5): 2105-2114, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36388664

RESUMO

Background: Arterial oxygenation is often impaired during one-lung ventilation (OLV), due to both pulmonary shunt and atelectasis. Lower fraction of inspiration O2 (FiO2) may reduce inflammation and complications, but may increase the risk of hypoxemia. The aim of this randomized controlled parallel trial was to analyze whether higher positive end-expiratory pressure (PEEP) could improve oxygenation and maintain lower levels of inflammation during OLV under a lower FiO2. Methods: One hundred and twenty patients with selective thoracotomy for esophageal cancer (EC) were classified randomly into four groups on a ratio of 1:1:1:1 using a computer-generated list, including Group A (FiO2 =0.6, PEEP =0), Group B (FiO2 =0.6, PEEP =5 cmH2O), Group C (FiO2 =1.0, PEEP =8 cmH2O), and Group D (FiO2 =1.0, PEEP =10 cmH2O). The oxygenation and pulmonary shunt were primary outcomes. Haemodynamics, respiratory mechanics, serum IL-6 and IL-10 levels, and complications were taken as secondary outcomes. Follow-up was terminated until discharge. Results: Two patients in Group A and two in Group D were excluded due to hypoxemia and hypotension, respectively. Then the data of 116 patients (Group A =28, Group B =30 Group C =30, and Group D =28) were assessed for final analysis. Compared with Group B, the partial pressure of oxygen (PaO2) and dynamic compliance during OLV in Group D were significantly increased from 15 minutes to 60 minutes, while pulmonary shunt was significantly decreased (P>0.05). Patients in Group D had higher levels of central venous pressure (CVP) and airway pressure (Paw) during OLV and higher levels of IL-6 and IL-10 after OLV compared with Group B (P>0.05). No statistical differences were found in oxygen saturation (SaO2), PvO2 (partial pressure of oxygen in venous blood), partial pressure of end-tidal carbon dioxide (ETCO2), partial pressure of carbon dioxide in artery (PaCO2), heart rate (HR), mean arterial pressure (MAP), and complications among the four groups (P>0.05). Conclusions: Higher PEEP increased the oxygenation under 60% O2 during OLV. However, the haemodynamics and respiratory mechanics changed, and the levels of inflammation increased. A higher PEEP under 60% O2 during OLV is not recommended. Trial Registration: Chinese Clinical Trial Registry ChiCTR1900024726.

12.
Front Surg ; 9: 982545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211278

RESUMO

[This corrects the article DOI: 10.3389/fsurg.2022.767611.].

13.
Front Neurosci ; 16: 976358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188464

RESUMO

Background: Long-term alcohol exposure is associated with oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation, which may impair cognitive function. Probiotics supplements can significantly improve cognitive function in neurodegenerative diseases such as Alzheimer's disease. Nevertheless, the effect of Lactobacillus plantarum ST-III culture supernatant (LP-cs) on alcohol-induced cognitive dysfunction remains unclear. Methods: A mouse model of cognitive dysfunction was established by intraperitoneal injection of alcohol (2 g/kg body weight) for 28 days. Mice were pre-treated with LP-cs, and cognitive function was evaluated using the Morris water maze test. Hippocampal tissues were collected for biochemical and molecular analysis. Results: LP-cs significantly ameliorated alcohol-induced decline in learning and memory function and hippocampal morphology changes, neuronal apoptosis, and synaptic dysfunction. A mechanistic study showed that alcohol activated protein kinase R-like endoplasmic reticulum kinase (PERK) signaling and suppressed brain derived neurotrophic factor (BDNF) levels via ER stress in the hippocampus, which LP-cs reversed. Alcohol activated oxidative stress and inflammation responses in the hippocampus, which LP-cs reversed. Conclusion: LP-cs significantly ameliorated alcohol-induced cognitive dysfunction and cellular stress. LP-cs might serve as an effective treatment for alcohol-induced cognitive dysfunction.

14.
J Environ Chem Eng ; 10(6): 108641, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36186959

RESUMO

Chloroquine Phosphate (CP) is an antiviral drug used for treatment of COVID-19. It is released into wastewater and eventually contaminates natural water. This study reports an effective homogeneous catalysis way for CP degradation by the 2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) enhanced persulfate (PDS) activation under UVB-LEDs irradiation at 305 nm. TEMPO at a low concentration (0.1 µM) enhanced CP degradation in UV305/PDS process in deionized water at different pHs, in different anions and different molecular weight dissolved organic matter solutions and in real surface water. The enhancement was verified to be attributed to the electron shuttle role of TEMPO, which promoted the yield of SO4 •- by enhancing electron donating capacity of the reacting system. The degradation products of CP and their acute toxicities suggested that UV305/PDS/TEMPO process has better performance on CP detoxification than UV305/PDS process. This study provides a new way to tackle the challenge of pharmaceutical pollutions in homogeneous photocatalysis process for natural water and sewage restoration.

15.
Appl Catal B ; 317: 121709, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35812172

RESUMO

Ribavirin (RBV) is an antiviral drug used for treating COVID-19 infection. Its release into natural waters would threaten the health of aquatic ecosystem. This study reports an effective approach to degrade RBV by the trace N-oxyl compounds (2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and N-Hydroxyphthalimide (NHPI)) enhanced UV activated free chlorine (UV/Chlorine) process. The results indicated that TEMPO and NHPI at low concentrations (0.1 µM and 1 µM, respectively) could strongly enhance RBV degradation in both deionized water with different pHs and practical surface water. The enhancement was verified to be attributed to the transformation of TEMPO and NHPI into their reactive forms (i.e., TEMPO+ and PINO), which generations deeply relied on radicals. The two N-oxyl compounds inhibit ClO• yield by hindering the reaction of free chlorine vs. HO• and Cl•. The analyses on acute toxicities of RBV degradation products indicate that UV/Chlorine/N-oxyl compounds process can detoxify RBV more efficiently than UV/Chlorine process.

16.
Front Surg ; 9: 767611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647006

RESUMO

Background: PTEN-Long is a translational variant of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). This tumor suppressor is frequently lost or mutated and even it has been shown as the determinant in several human tumors. Therefore, we will determine the significant roles of PTEN-Long in the development of liver cancer. Methods: In the present study, we characterized the antitumor effects of PTEN-Long and PTEN in proliferation, migration of HepG2 cells, apoptosis and autophagy in liver cancer cells. To extends, we have also measured the effects of purified PTEN and PTEN-Long in the above index of HepG2 cells. Results: PTEN and PTEN-Long were ectopic-expressed in HepG2 cells, and their phenotypic effects were recorded. As expected, there was less expression of PTEN-Long and PTEN in liver cancer samples than in paired normal tissues. Ectopic expression of PTEN-Long or PTEN significantly decreased the proliferation and migration of HepG2 cells and increased apoptosis. PTEN ectopic-expression increased the number of GFP-/RFP+-LC3 puncta and levels of beclin-1 and LC3BII/LC3BI, suggesting autophagy induction. Purified PTEN-Long freely entered cells, decreased proliferation, and increased autophagy and apoptosis, while purified PTEN did not. Conclusions: Our results identify an antitumor function of purified PTEN-Long and suggest its potential utility for liver cancer treatment.

17.
BMC Pulm Med ; 22(1): 37, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027012

RESUMO

BACKGROUND: Prostaglandin E1 (PGE1) has been reported to maintain adequate oxygenation among patients under 60% FiO2 one-lung ventilation (OLV). This research aimed to explore whether PGE1 is safe in pulmonary shunt and oxygenation under 40% FiO2 OLV and provide a reference concentration of PGE1. METHODS: Totally 90 esophageal cancer patients treated with thoracotomy were enrolled in this study, randomly divided into three groups (n = 30/group): Group A (60% FiO2 and 0.1 µg/kg PGE1), Group B (40% FiO2 and 0.1 µg/kg PGE1), and Group C (40% FiO2, 0.2 µg/kg PGE1). Primary outcomes were oxygenation and pulmonary shunt during OLV. Secondary outcomes included oxidative stress after OLV. RESULTS: During OLV, patients in Group C and B had lower levels of PaO2, SaO2, SpO2, MAP, and Qs/Qt than those in Group A (P < 0.05). At T2 (OLV 10 min), patients in Group C and B exhibited a lower level of PaO2/FiO2 than those in Group A, without any statistical difference at other time points. The IL-6 levels of patients in different groups were different at T8 (F = 3.431, P = 0.038), with IL-6 in Group C being lower than that in Group B and A. MDA levels among the three groups differed at T5 (F = 4.692, P = 0.012) and T7 (F = 5.906, P = 0.004), with the MDA level of Group C being lower than that of Group B and A at T5, and the MDA level of Group C and B being lower than that of Group A at T7. In terms of TNF-α level, patients in Group C had a lower level than those in Group B and A at T8 (F = 3.598, P = 0.033). Compared with patients who did not use PGE1, patients in Group C had comparable complications and lung infection scores. CONCLUSION: The concentration of FiO2 could be reduced from 60 to 40% to maintain oxygenation. 40% FiO2 + 0.2 µg/kg PGE1 is recommended as a better combination on account of its effects on the inflammatory factors. TRIAL REGISTRATION: Chictr.org.cn identifier: ChiCTR1800018288, 09/09/2018.


Assuntos
Alprostadil/farmacologia , Pulmão/efeitos dos fármacos , Ventilação Monopulmonar , Idoso , Idoso de 80 Anos ou mais , Proteínas de Drosophila , Feminino , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Nebulizadores e Vaporizadores , Oxigênio , Testes de Função Respiratória , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
18.
ACS Omega ; 7(2): 2210-2216, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071909

RESUMO

The coal industry is facing the challenge of treating high-ash fine coal. In this study, we proposed an effective method to handle high-ash fine coal using water containing positively charged nanobubbles (PCNBs) and polyaluminum chloride (PAC). For comparison, normal nanobubble (NB) water was tested in parallel. Flotation results of a modeled high-ash fine coal showed that compared to the use of NBs alone, an enhanced combustible recovery with a simultaneous reduction in ash recovery was obtained when using water containing PCNBs and PAC. Particle size distribution together with particle video microscopy (PVM) and the degree of entrainment analysis were conducted to understand the underpinning mechanism. It was found that the presence of PCNBs intensified the aggregation of fine coal particles, which accounted for the boosted combustible recovery. It was interesting that PAC could disrupt coal flocs induced by NBs, leading to the release of trapped kaolinite particles with alleviated clay recovery by entrapment.

19.
Prep Biochem Biotechnol ; 52(7): 789-799, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34747342

RESUMO

In this study, a high protease-producing strain was screened by spread plate method and identified by molecular biology and morphological identification. It was identified as Bacillus sp. LCB14. A neutral protease gene was cloned and heterologous expressed by B. subtilis SCK6. Then, the recombinant protease was used to dehair the goat skins. The fermentation conditions of neutral protease production by B. subtilis SCK6 were optimized. The single factor experiments, Plackett-Burma experiment, and response surface method were conducted to determine fermentation medium and culture conditions. The optimized medium contained corn meal 49 g/L, soluble starch 28 g/L, soybean meal 17 g/L, corn steep liquor powder 8 g/L, yeast extract 10 g/L, Na2HPO4 2.3 g/L, KH2PO4 1.9 g/L, MgSO4 0.5 g/L, MnCl2 0.1 g/L and ZnSO4 0.05 g/L. The optimized culture conditions were 35 °C and pH 7.0. Under the optimum conditions, the recombinant strain reached 33467.28 U/mL after 72 hr ferment. Moreover, by fed batch in 30 L fermenters, neutral protease production reached 39,440.78 U/mL and shortened fermentation time from 72 hr to 46 hr. Finally, the crude enzyme was utilized to replace sodium sulfide for dehairing of goatskins. The enzymatic dehaired pelts were white, smooth, and soft; the grain side of enzymatic dehaired pelts were clear; there was no obvious damage to the grain side of enzymatic dehaired pelts by visual observation and tactile test. Furthermore, there were no hair roots, hair follicles and other glands in enzymatic dehaired belts, and the collagen fibers of enzymatic dehaired belt were dispersed well by histological analysis.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Meios de Cultura , Endopeptidases/metabolismo , Fermentação , Metaloproteases , Peptídeo Hidrolases/metabolismo
20.
Ultrason Sonochem ; 82: 105877, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34920351

RESUMO

In this study, ultrasonic treatment was introduced to enhance the depressive performance of starch in the reverse flotation separation of fine hematite from quartz. It was found that after ultrasonic treatment, starch was not only able to impart a higher surface wettability of hematite, but also better reduced the degree of entrainment of fine hematite, both of which alleviated the loss of hematite to the froth. Flocculation tests together with starch property characterization were conducted to understand the underpinning mechanism. It is interesting that ultrasonic treatment of starch led to stronger and more selective flocculation of hematite, which accounted for the reduced entrainment loss of fine hematite and benefited the concentrate Fe grade. It was also found that ultrasonic treatment enhanced the dissolution and acidity of starch with a simultaneous increase in the content of amylose, which in turn could contribute to the improved depression and selective flocculation of hematite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...