Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(24): 40202-40209, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041326

RESUMO

The generation of intense infrared radiation with a wavelength greater than 10 µm is limited by the optical materials in traditional methods or the laser-plasma parameters of plasma-bubble methods. In this study, we propose a new method for generating an intense longitudinal radiation field of tens of GV/m. By utilizing the oscillations of the electron film on the inner surface of the micro-tube, excited by the relativistic electron beam propagating within it, it is possible to obtain tunable long-wavelength few-cycle infrared radiation, ranging from 20 to 30 µm and even longer. The radiation source is guided entirely by a relativistic electron beam and formed a stable TM propagation mode in the micro-tube. This opens up new opportunities for applications of the relativistic intensity infrared radiation to high-field physics, shorter attosecond pulses generation and charged particle acceleration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...