Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 639: 193-202, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805744

RESUMO

The high entropy alloy is a powerful material due to its high hardness, strength, magnetic performance, corrosion resistance, and temperature stability. Moreover, when combined with reduced graphene oxide (rGO), it formed a novel material for electromagnetic (EM) absorption. In this work, monodisperse high entropy alloy nanocrystals combined with rGO to create a new type of high entropy alloy/rGO EM absorption material. A colloidal synthesis strategy was used to prepare high entropy Pt18Ni26Fe15Co14Cu27 nanocrystals with a small size of around 3.3 nm. These nanocrystals then in situ grew uniformly on the surface of rGO to form Pt18Ni26Fe15Co14Cu27/rGO nanocomposite, which were then characterized and tested for EM absorption performance. Compared to the pure high entropy Pt18Ni26Fe15Co14Cu27 nanocrystals, the composite exhibited an improved EM absorption performance with a minimum reflection loss of -41.8 dB at 4.9 GHz and efficient EM wave absorption up to a bandwidth of 2.5 GHz in the 9.4-11.9 GHz band. This novel high entropy alloy/rGO composite has great potential to be used as an excellent material for EM wave absorption.

2.
J Chromatogr A ; 1688: 463728, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36566571

RESUMO

Fabricating functional electrospun nanofiber coating for highly selective extraction of microcystin-LR (MC-LR) was of significant importance for water-safety monitoring. Herein, a novel MOF@aptamer functionalized nanofabric was presented via a facile and reliable strategy integrating polydopamine (PDA) mediation and thiol-ene chemistry and applied for specific recognition of the MC-LR model analyte. Using polydopamine (PDA) as the mediating layer, vinyl-UiO-66 MOF was grown in situ, followed by post-synthetic modification (PSM) of Zr4+ with vinyl phosphate and rapid UV-initiated click reaction of aptamers. Uniform deposition of Zr-based MOF (vinyl-UiO-66) on the nanofibers was directly produced, and the tedious co-electrospinning process was abandoned to prevent the aggregation and encapsulation of MOF. Via an efficient "thiol-ene" chemistry, massive thiol-terminated aptamers were grafted on MOF within one step under friendly conditions, rather than the time-consuming nanoparticle adsorption or unfriendly covalent chemical reactions. As a result, the robust MOF@aptamer-coated nano-fabrics were obtained, and a highly selective performance towards MC-LR was illustrated with a limit of detection (LOD) at 0.002 ng/mL, good precision (CV<8.3%), good repeatability (2.2∼6.0%) when coupled with LC-MS. Almost 1∼2 orders of magnitude higher detection sensitivity was exhibited than that of the common non-specific SPE/SPME fiber reported so far. Applied to water samples, the good matrix-resistance ability, and acceptable recovery yields were achieved with high specificity. This strategy might provide a rapid and friendly protocol to efficiently fabricate MOF@aptamer functionalized nano-fabrics through electrospinning and interfacial "thiol-ene" chemistry for highly-selective microextraction.


Assuntos
Aptâmeros de Nucleotídeos , Estruturas Metalorgânicas , Compostos Organometálicos , Arginina , Leucina , Água , Compostos de Sulfidrila
3.
Talanta ; 236: 122880, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635260

RESUMO

A novel aptamer-functionalized metal-organic framework nanofibrous composite (viz. PAN/UiO@UiO2-N3-aptamer) with a high aptamer coverage density was proposed based on the electrospinning and seeded growth method, and used for specific affinity recognition of trace Microcystin-LR (MC-LR). Heterobifunctional ligand was used to modify the metal-organic framework nanoparticles (MOF NPs) surface, which could passivate the MOF surface with respect to unmodified DNA, followed by coupling massive aptamers on MOF of the solid-phase microextraction (SPME) fiber using click chemistry. Characterizations including morphology, spectra analysis, mechanical stability, binding capacity and specificity were fulfilled. Applied to the analysis of MC-LR, the good selective and sensitive recognition were obtained with the detection limit as low as 0.003 ng/mL, which was better than most non-specific SPME or solid-phase extraction (SPE) protocols. The stability and reproducibility were acceptable, and the intra-day, inter-day and column-to-column relative standard deviations (RSDs) for the recovery of MC-LR were gained in the range from 2.5% to 14.3%, respectively. Satisfactory recoveries of MC-LR in environmental water samples were measured as 96.3 ± 4.7% - 98.9 ± 2.7% (n = 3) in tap water, 94.4 ± 2.5% - 96.1 ± 3.5% (n = 3) in pond water, and 97.0 ± 2.1% - 97.9 ± 3.1% (n = 3) in river water, respectively. This work demonstrated that the electrospun nanofibrous composite with massive aptamers would be a better alternative for ultra-trace MC-LR detection with good selectivity, matrix-resistance ability and high resolution.


Assuntos
Aptâmeros de Nucleotídeos , Estruturas Metalorgânicas , Nanofibras , Toxinas Marinhas , Microcistinas , Reprodutibilidade dos Testes
4.
J Chromatogr A ; 1656: 462542, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34543883

RESUMO

A novel aptamer@AuNPs@UiO-66-NH2 electrospun nanofibrous coating fiber for specific recognition of microcystin-LR (MC-LR) was proposed by using electrospinning, metal-organic frameworks (MOF) seed growth and AuNPs bridging aptamer strategies. Characterization of morphology, structure and stability of the obtained affinity nanofibrous coating fiber were investigated. High loading of MOFs and aptamers on the nanofibrous fiber were achieved and successfully applied for accurate identification of MC-LR by solid-phase microextraction (SPME) coupled with LC-MS. Highly specific recognition of MC-LR with little interference of analogs was achieved with extremely low LOD (0.004 ng/mL), good precision (CV% < 11.0%) and low relative error (RE% = -1.5% to -10.0%), which was rather better than that of the traditional SPME or SPE protocols. Satisfactory recoveries of MC-LR were obtained in the range of 92.0-96.8% (n = 3) in fortified tap water, raw pond water and river water samples. This work revealed an attractive alternative access to specific recognition and super-sensitive analysis of MC-LR in water.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Estruturas Metalorgânicas , Nanofibras , Ouro , Microcistinas , Água
5.
Ecotoxicol Environ Saf ; 130: 234-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27131747

RESUMO

Horseradish peroxidase shows potential biological and environmental applications on the removal of phenolic compounds. In the present study, the HRP-immobilized beads were synthesized to detect the efficiency of the removal of phenol at optimum pH and H2O2 concentration. Comparative in vitro cytotoxicity of phenol/treated solutions were evaluated in HeLa, HepG2 and mcf-7 cells by using MTT method along with flow cytometry study for cell viability and cell cycle distributions. The results showed that the toxicity of phenol solutions were greatly reduced after treated by HRP-immobilized beads, and phenol could lead to deactivate of cells in the S phase and preventing them from going into the G2/M checkpoint. In addition, molecular docking study showed that phenol was a valid inhibitor for the cyclin E in the cell cycle and cell metabolism. Thereby, we established a suitable strategy with promising application for efficient harmless removal of phenol, which significantly decreased the cytotoxic impacts of phenol.


Assuntos
Enzimas Imobilizadas/química , Peroxidase do Rábano Silvestre/química , Fenol/química , Fenol/toxicidade , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina E/antagonistas & inibidores , Ecotoxicologia , Células HeLa , Células Hep G2 , Humanos , Peróxido de Hidrogênio/química , Células MCF-7 , Simulação de Acoplamento Molecular , Oxirredução , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...