Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 216: 112565, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35588686

RESUMO

Pyrethroid insecticides are a group of widely used bio-mimetic synthetic pesticides. However, recent studies reported that they could have an accumulation effect in human which may cause series of health problems. Estrogen receptors (ER) are a class of nuclear receptors that are vital in proper physiological behavior of estrogens. To investigate the reproductive toxicity of pyrethroids, homology modeling, molecular docking, molecular dynamic simulations (MDs) were conducted to explore the interaction between pyrethroids and ERα from atomic scale. The human ERα (2YJA) was selected as a template protein for homology modeling. Then eight typical pyrethroids and positive control estradiol were docked to the modeled protein. The highest scoring bifenthrin and the lowest scoring permethrin were chosen for in-depth analysis. MDs showed that the complex formed by permethrin with ERα had a lower RMSD value and binding free energies compared to bifenthrin. Based on these results from microscopic dimension, exposure experiments were implemented to validate the primary conclusions. VTG concentrations in male zebrafish's blood were significantly higher under permethrin exposure than bifenthrin, suggesting a stronger estrogenic activity and binding propensity. In this regard, the structural characteristics of molecules were analyzed, expecting to provide theoretical references for subsequent drug design and rational drug application.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Animais , Receptor alfa de Estrogênio/metabolismo , Inseticidas/farmacologia , Masculino , Simulação de Acoplamento Molecular , Permetrina/metabolismo , Piretrinas/toxicidade , Peixe-Zebra/metabolismo
2.
J Environ Sci (China) ; 82: 155-168, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31133261

RESUMO

To understand the physical and chemical characteristics, particle size distribution and sources of size-separated aerosols in Lhasa, which is located on the Tibetan Plateau (TP), six sizes of aerosol samples were collected in Lhasa in 2014. Ca2+, NH4+, NO3-, SO42- and Cl- were the dominant ions. The ratio of cation equivalents (CE) to anion equivalents (AE) for each particle size segment indicated that the atmospheric aerosols in Lhasa were alkaline. SO42- and NO3- could be neutralized by Ca2+, but could not be neutralized by NH4+, according to the [NH4+]/[NO3- + SO42-] and [Ca2+]/[NO3- + SO42-] ratios. Mobile sources were dominant in PM0.95-1.5, PM1.5-3 and PM3-7.2, while stationary sources were dominant in the other three size fractions according to the [NO3-]/[SO42-] ratios. The particle size distribution of all water-soluble ions during monsoon and non-monsoon periods was characterized by a bimodal distribution due to the different sources and formation mechanisms, and it was revealed that different ions had different sources in different seasons and different particle size segments by combining particle size distribution with correlation analysis. Source analysis of aerosols in Lhasa was performed using the Principal component analysis (PCA) for the first time, which revealed that combustion sources, motor vehicle exhaust, photochemical reaction sources and various types of dust were the main sources of Lhasa aerosols. Furthermore, Lhasa's air quality was also affected by long-distance transmission, expressed as pollutants from South Asia and West Asia, which were transmitted to Lhasa according to backward trajectory analysis.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Chuva/química , Aerossóis/análise , Material Particulado/análise , Estações do Ano , Solubilidade , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...