Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(19): 1996-2010.e6, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37557173

RESUMO

Hepatocytes, the liver's predominant cells, perform numerous essential biological functions. However, crucial events and regulators during hepatocyte maturation require in-depth investigation. In this study, we performed single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) to explore the precise hepatocyte development process in mice. We defined three maturation stages of postnatal hepatocytes, each of which establishes specific metabolic functions and exhibits distinct proliferation rates. Hepatic zonation is gradually formed during hepatocyte maturation. Hepatocytes or their nuclei with distinct ploidies exhibit zonation preferences in distribution and asynchrony in maturation. Moreover, by combining gene regulatory network analysis with in vivo genetic manipulation, we identified critical maturation- and zonation-related transcription factors. This study not only delineates the comprehensive transcriptomic profiles of hepatocyte maturation but also presents a paradigm to identify genes that function in the development of hepatocyte maturation and zonation by combining genetic manipulation and measurement of coordinates in a single-cell developmental trajectory.

2.
J Cosmet Dermatol ; 21(12): 7090-7099, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36099014

RESUMO

BACKGROUND: Glycyrrhiza is one of the most widely used traditional Chinese medicines in China. Its main bioactive ingredient glycyrrhizic acid (GA) has the potential to be used as a treatment for atopic dermatitis (AD) because it has similar actions to steroids, but with relatively few side effects. AIMS: The objective of this study was to explore the potential mechanisms of GA on AD mice model. METHODS: Calcipotriol, a vitamin D3 analogue (MC903) was applied topically to establish AD mouse model. Mice were intraperitoneally administrated with 2 mg/kg dexamethasone (DEX), 25 or 50 mg/kg GA for 15 days. After mice were executed, skin tissues were collected and detected the expression levels of IL-4, IFN-γ, TNF-α and thymic stromal lymphopoietin (TSLP). The percentages of Th1, Th2, Th17, langerhans cells (LCs) in draining lymph nodes (dLNs) were measured by flow cytometry. RESULTS: Our data demonstrated that GA improved the symptoms of AD by exerting anti-inflammatory and anti-allergic functions in vivo. We found that GA treatment decreased the level of total IgE in serum, suppressed ear swelling, reduced the infiltration of mast cells in skin lesions and decreased expressions of IL-4, IFN-γ, TNF-α and TSLP in skin lesions. Furthermore, our experimental results demonstrated that GA suppressed the Th1/Th2/Th17-immune responses in the dLNs, inhibited the migration of LCs in dLNs. CONCLUSIONS: In conclusion, our findings suggested potential therapeutic effects of GA against MC903-induced AD-like skin lesions in mice.


Assuntos
Dermatite Atópica , Camundongos , Animais , Ácido Glicirrízico/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-4/efeitos adversos , Citocinas/metabolismo , Pele , Linfopoietina do Estroma do Timo
3.
Phytomedicine ; 102: 154200, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35671605

RESUMO

BACKGROUND: Myricetin (Myr) is a flavonoid compound that exist widely in many natural plants. Myr has been proven to have multiple biological functions, including immunomodulatory and anti-inflammatory effects. PURPOSE: In this study, we investigated the therapeutic effect of Myr on calcipotriol (MC903) induced atopic dermatitis (AD) mouse model and tumor necrosis factor (TNF)-α/interferon (IFN)-γ stimulated human immortal keratinocyte line (HaCaT) in vivo and in vitro. METHODS: MC903 was applied topically to the left ears of mice to establish AD mouse model. After the AD model established successfully, the cream base, dexamethasone (DEX) cream or Myr cream were applied on the lesions of mice for 8 days. Through measuring ear thickness and scoring dermatitis severity, we evaluated the therapeutic effect of Myr, the draining lymph nodes (DLNs) and ears of the mice were collected for mechanistic study. In addition, TNF-α and IFN-γ-activated HaCaT cells were used to investigate the underlying mechanism. RESULTS: Our data demonstrated that Myr alleviated the symptoms of AD by exerting anti-inflammatory and anti-allergic functions in vivo. We found that Myr treatment suppressed ear swelling and IgE level in the serum, reduced the infiltration of mast cells in skin lesions, decreased expressions of thymus and activation regulated chemokine (TARC), IL-4, IFN-γ and thymic stromal lymphopoietin (TSLP) in ear lesions, increased the expressions of filaggrin (FLG). Furthermore, our experimental results demonstrated that Myr down-regulated the mRNA expressions of T-bet and GATA-3 in DLNs. In vitro, Myr treatment decreased MDC and TARC expressions in IFN-γ and TNF-α-induced HaCaT cells by blocking the NF-κB and STAT1 signal pathway. CONCLUSION: The present study is the first to investigate the anti-atopic effects of Myr. Our findings suggested the therapeutic effects of Myr against MC903-induced AD-like skin lesions in mice. Therefore, Myr may be a potential therapeutic agent for AD.


Assuntos
Dermatite Atópica , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Quimiocinas/metabolismo , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Queratinócitos , Camundongos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Cell Res ; 31(3): 326-344, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33106598

RESUMO

Defining the precise regionalization of specified definitive endoderm progenitors is critical for understanding the mechanisms underlying the generation and regeneration of respiratory and digestive organs, yet the patterning of endoderm progenitors remains unresolved, particularly in humans. We performed single-cell RNA sequencing on endoderm cells during the early somitogenesis stages in mice and humans. We developed molecular criteria to define four major endoderm regions (foregut, lip of anterior intestinal portal, midgut, and hindgut) and their developmental pathways. We identified the cell subpopulations in each region and their spatial distributions and characterized key molecular features along the body axes. Dorsal and ventral pancreatic progenitors appear to originate from the midgut population and follow distinct pathways to develop into an identical cell type. Finally, we described the generally conserved endoderm patterning in humans and clear differences in dorsal cell distribution between species. Our study comprehensively defines single-cell endoderm patterning and provides novel insights into the spatiotemporal process that drives establishment of early endoderm domains.


Assuntos
Padronização Corporal/genética , Embrião de Mamíferos/citologia , Endoderma/citologia , Intestinos/citologia , Lábio/citologia , Animais , Células Cultivadas , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA-Seq/métodos , Análise de Célula Única/métodos
6.
Cell Rep ; 33(10): 108455, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296648

RESUMO

The ever-increasing therapeutic and pharmaceutical demand for liver cells calls for systems that enable mass production of hepatic cells. Here we describe a large-scale suspension system that uses human endoderm stem cells (hEnSCs) as precursors to generate functional and transplantable hepatocytes (E-heps) or cholangiocytes (E-chos). hEnSC-derived hepatic populations are characterized by single-cell transcriptomic analyses and compared with hESC-derived counterparts, in-vitro-maintained or -expanded primary hepatocytes and adult cells, which reveals that hepatic differentiation of hEnSCs recapitulates in vivo development and that the heterogeneities of the resultant populations can be manipulated by regulating the EGF and MAPK signaling pathways. Functional assessments demonstrate that E-heps and E-chos possess properties comparable with adult counterparts and that, when transplanted intraperitoneally, encapsulated E-heps were able to rescue rats with acute liver failure. Our study lays the foundation for cell-based therapeutic agents and in vitro applications for liver diseases.


Assuntos
Técnicas de Cultura de Células/métodos , Endoderma/citologia , Hepatócitos/citologia , Células-Tronco Embrionárias Humanas/citologia , Ductos Biliares/citologia , Ductos Biliares/metabolismo , Diferenciação Celular/fisiologia , Endoderma/metabolismo , Endoderma/transplante , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/transplante , Humanos , Fígado/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante
7.
Cell Res ; 30(12): 1109-1126, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32690901

RESUMO

During embryogenesis, the liver is the site of hepatogenesis and hematopoiesis and contains many cell lineages derived from the endoderm and mesoderm. However, the characteristics and developmental programs of many of these cell lineages remain unclear, especially in humans. Here, we performed single-cell RNA sequencing of whole human and mouse fetal livers throughout development. We identified four cell lineage families of endoderm-derived, erythroid, non-erythroid hematopoietic, and mesoderm-derived non-hematopoietic cells, and defined the developmental pathways of the major cell lineage families. In both humans and mice, we identified novel markers of hepatic lineages and an ID3+ subpopulation of hepatoblasts as well as verified that hepatoblast differentiation follows the "default-directed" model. Additionally, we found that human but not mouse fetal hepatocytes display heterogeneity associated with expression of metabolism-related genes. We described the developmental process of erythroid progenitor cells during human and mouse hematopoiesis. Moreover, despite the general conservation of cell differentiation programs between species, we observed different cell lineage compositions during hematopoiesis in the human and mouse fetal livers. Taken together, these results reveal the dynamic cell landscape of fetal liver development and illustrate the similarities and differences in liver development between species, providing an extensive resource for inducing various liver cell lineages in vitro.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Fígado/citologia , Organogênese/genética , Análise de Célula Única , Transcriptoma/genética , Animais , Biomarcadores/metabolismo , Eritrócitos/citologia , Eritropoese/genética , Feto/citologia , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/embriologia , Mesoderma/citologia , Camundongos , Análise de Componente Principal , RNA/metabolismo , Processos Estocásticos
8.
EMBO Rep ; 19(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30065074

RESUMO

The pancreas of vertebrates is separately derived from both the dorsal and ventral endodermal domains. However, the difference between these two programs has been unclear. Here, using a pancreatic determination gene, Pdx1, driven GFP transgenic mouse strain, we identified Pdx1-GFP highly expressing cells (Pdx1high) and Pdx1-GFP lowly expressing cells (Pdx1low) in both embryonic dorsal Pdx1-expressing region (DPR) and ventral Pdx1-expressing region (VPR). We analyzed the transcriptomes of single Pdx1low and Pdx1high cells from the DPR and VPR. In the VPR, Pdx1low cells have an intermediate progenitor identity and can generate hepatoblasts, extrahepatobiliary cells, and Pdx1high pancreatic progenitor cells. In the DPR, Pdx1high cells are directly specified as pancreatic progenitors, whereas Pdx1low cells are precocious endocrine cells. Therefore, our study defines distinct road maps for dorsal and ventral pancreatic progenitor specification. The findings provide guidance for optimization of current ß-cell induction protocols by following the in vivo dorsal pancreatic specification program.


Assuntos
Proteínas de Homeodomínio/genética , Pâncreas/crescimento & desenvolvimento , Células-Tronco/metabolismo , Transativadores/genética , Transcriptoma/genética , Animais , Linhagem da Célula/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Transgênicos/genética , Pâncreas/embriologia , Pâncreas/metabolismo , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...