Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18280, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880482

RESUMO

In China's cold region water conservancy and hydropower projects, the contact interface between the dam and the reservoir bank rock is prone to cracking under external loading and freeze-thaw action, which may lead to dam-bank failure and damage and cause engineering disasters. The NMR (Nuclear Magnetic Resonance) tests and uniaxial compression tests of concrete, sandstone, and sandstone-concrete composite after different numbers of freeze-thaw cycles were carried out to analyze the pore structure development and uniaxial compression mechanical properties of the three types of specimens under different numbers of freeze-thaw cycles. The results show that freeze-thaw cycling promotes the development of pores in sandstone and concrete, and sandstone is more sensitive to low-temperature freeze-thaw than concrete. The UCS (uniaxial compressive strength) of the sandstone-concrete binary changed in a V-shaped with the increase of the dip angle of the cemented interface, and the angle had no obvious effect on the microscopic pores. The freeze-thaw effect on the deterioration of the microscopic pore structure and mechanical properties of the sandstone-concrete binary has a similar effect pattern, in which the deterioration rate of porosity and compressive strength is faster in the early freeze-thaw period, slower in the middle period, and increases in the later period compared with the middle period, but the increase is smaller than that in the early period of freeze-thaw. In addition, the relationship between the porosity and UCS of the sandstone-concrete binary under the freeze-thaw cycle environment is a quadratic parabola.

2.
Nat Commun ; 14(1): 3456, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308484

RESUMO

Solar-thermal storage with phase-change material (PCM) plays an important role in solar energy utilization. However, most PCMs own low thermal conductivity which restricts the thermal charging rate in bulk samples and leads to low solar-thermal conversion efficiency. Here, we propose to regulate the solar-thermal conversion interface in spatial dimension by transmitting the sunlight into the paraffin-graphene composite with side-glowing optical waveguide fiber. This inner-light-supply mode avoids the overheating surface of the PCM, accelerates the charging rate by 123% than that of the traditional surface irradiation mode and increases the solar thermal efficiency to ~94.85%. Additionally, the large-scale device with inner-light-supply mode works efficiently outdoors, indicating the potential of this heat localization strategy in practical application.

3.
ACS Appl Mater Interfaces ; 14(26): 30324-30331, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35729800

RESUMO

Solar desalination shows great potential in dealing with global water scarcity. A multistage passive solar distiller with thermal localization is especially attractive for its high-water yield. However, achieving long-term stability in large-scale devices remains a challenge because of the easy accumulation of crystallized salt inside the distiller. Here, we reported that the Marangoni effect can drive crystallized salt away along a long distance in a capillary wick, which endow the multistage passive solar distiller with the ability of salt-rejecting. In a 36 h continuous testing, the salinity of the distillation zone is limited below 12 wt % and crystallized salt only accumulates outside the device. The water yield is about 1.7 kg m-2 h-1 in a three-stage device, with a solar-to-vapor conversion efficiency of 114% under one sun. This novel design proves a new principle for high efficiency and long-term stable solar desalination.

4.
ACS Appl Mater Interfaces ; 13(3): 4305-4315, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33427448

RESUMO

Utilizing the abundant and renewable solar energy to address the global energy shortage and water scarcity is promising. Great effort has been devoted to photothermal conversion for its typically full-spectrum utilization and high efficiency. Here, the coral-like micro/nanostructure was fabricated on an aluminum sheet by a facile laser direct writing technology. The nanocluster and microscale branches of corals endowed this black aluminum with broad-band plasmonic absorption and rapid heat transfer from the light absorption region to substrate. The black aluminum achieved ultrahigh solar absorbance of over 92.6% (>95.1% in the visible range) and excellent light heating ability (>90.6 °C under 1.0 sun). With good photothermal properties, this plasmonic absorber was used in a state-of-the-art eight-layer membrane distillation system, producing a water yield of up to 2.40 kg m-2 h-1 and a high solar conversion efficiency of 166.5% under 1-sun irradiation. Photothermal electricity was also achieved based on this system with a thermoelectric generator, with a water yield of 0.89 kg m-2 h-1 and a maximum electrical power output of 7.21 µW cm-2 under 1.0 sun. Considering the excellent performance of the plasmon-enhanced black aluminum, this work provides an alternative and feasible route toward high-efficient utilization of the solar energy.

5.
ACS Appl Mater Interfaces ; 12(16): 18504-18511, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32239918

RESUMO

Solar-driven interfacial evaporation with heat localization is an efficient method for large-scale water purification. However, due to the high latent heat of water evaporation and dilute solar flux (1 kW m-2), the solar steam productivity is low. Here, the latent heat of water evaporation was reduced because of the capillary water state in wood channels. We constructed a wood-based 3D solar evaporator via regulating the hydrophilicity of a surface of burnt wood and adjusting the height of the wood above a water surface. Capillary water was formed in the light absorption layer, resulting in the latent heat decrease from 2444 to 1769 J g-1. A high evaporation rate of 1.93 kg m-2 h-1 under one sun irradiation (1 kW m-2) was achieved. Together with the environmental energy-harvesting ability, the evaporation rate reached 3.91 kg m-2 h-1 (per occupied area), which is among the best values ever reported. More importantly, the 3D solar evaporator works efficiently in a water collection device, yielding 2.2 times more water than that of a common interfacial evaporator.

6.
ACS Appl Mater Interfaces ; 10(9): 8010-8015, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29405693

RESUMO

Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane. Pressure-driven electrolyte flow through the nanochannels generates streaming potential, which can be used to charge the capacitive electrodes, accomplishing simultaneous energy generation and storage. The device stores electric charge density of 0.4 mC cm-2 after fully charging under pressure of 2.5 bar. This work may offer a train of thought for the development of a new type of energy unit for self-powered systems.

7.
Glob Chall ; 2(5-6): 1800001, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31565334

RESUMO

Water distillation with solar thermal technology could be one of the most promising way to address the global freshwater scarcity, with its low cost and minimum environmental impacts. However, the low liquid water productivity, which is caused by the heat loss and inadequate heat utilization in solar-thermal conversion process, hinders its practical application. Here, a compact solar-thermal membrane distillation system with three structure features: highly localized solar-thermal heating, effective cooling strategy, and recycling the latent heat, is proposed. The steam generation rate is 0.98 kg m-2 h-1 under solar illumination of 1 kW m-2 in the open system, while the liquid water productivity could be 1.02 kg m-2 h-1 with the solar efficiency up to 72% with a two-level device. The outdoor experiments show a water productivity of 3.67 kg m-2 with salt rejection over 99.75% in one cloudy day. These results demonstrate an easy and high-efficiency way for water distillation, especially suitable for household solar water purification.

8.
ACS Appl Mater Interfaces ; 9(17): 15052-15057, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28402107

RESUMO

Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m-1 K-1), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m-2, and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.

9.
Nat Nanotechnol ; 12(4): 317-321, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28135262

RESUMO

Water evaporation is a ubiquitous natural process that harvests thermal energy from the ambient environment. It has previously been utilized in a number of applications including the synthesis of nanostructures and the creation of energy-harvesting devices. Here, we show that water evaporation from the surface of a variety of nanostructured carbon materials can be used to generate electricity. We find that evaporation from centimetre-sized carbon black sheets can reliably generate sustained voltages of up to 1 V under ambient conditions. The interaction between the water molecules and the carbon layers and moreover evaporation-induced water flow within the porous carbon sheets are thought to be key to the voltage generation. This approach to electricity generation is related to the traditional streaming potential, which relies on driving ionic solutions through narrow gaps, and the recently reported method of moving ionic solutions across graphene surfaces, but as it exploits the natural process of evaporation and uses cheap carbon black it could offer advantages in the development of practical devices.

10.
Angew Chem Int Ed Engl ; 55(28): 8003-7, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27159427

RESUMO

Sustainable electrical potential of tens of millivolts can be induced by water vapor adsorption on a piece of porous carbon film that has two sides with different functional group contents. Integrated experiments, and Monte Carlo and ab initio molecular dynamics simulations reveal that the induced potential originates from the nonhomogeneous distribution of functional groups along the film, especially carboxy groups. Sufficient adsorbed water molecules in porous carbon facilitate the release of protons from the carboxy groups, resulting in a potential drop across the carbon film because of the concentration difference of the released free protons on the two sides. The potential utilization of such a phenomenon is also demonstrated by a self-powered humidity sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...