Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775339

RESUMO

The biogeochemical processes of iodine are typically coupled with organic matter (OM) and the dynamic transformation of iron (Fe) minerals in aquifer systems, which are further regulated by the association of OM with Fe minerals. However, the roles of OM in the mobility of iodine on Fe-OM associations remain poorly understood. Based on batch adsorption experiments and subsequent solid-phase characterization, we delved into the immobilization and transformation of iodate and iodide on Fe-OM associations with different C/Fe ratios under anaerobic conditions. The results indicated that the Fe-OM associations with a higher C/Fe ratio (=1) exhibited greater capacity for immobilizing iodine (∼60-80% for iodate), which was attributed to the higher affinity of iodine to OM and the significantly decreased extent of Fe(II)-catalyzed transformation caused by associated OM. The organic compounds abundant in oxygen with high unsaturation were more preferentially associated with ferrihydrite than those with poor oxygen and low unsaturation; thus, the associated OM was capable of binding with 28.1-45.4% of reactive iodine. At comparable C/Fe ratios, the mobilization of iodine and aromatic organic compounds was more susceptible in the adsorption complexes compared to the coprecipitates. These new findings contribute to a deeper understanding of iodine cycling that is controlled by Fe-OM associations in anaerobic environments.

2.
Environ Sci Technol ; 58(13): 5932-5941, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502530

RESUMO

Organoiodine compounds (OICs) are the dominant iodine species in groundwater systems. However, molecular mechanisms underlying the geochemical formation of geogenic OICs-contaminated groundwater remain unclear. Based upon multitarget field monitoring in combination with ultrahigh-resolution molecular characterization of organic components for alluvial-lacustrine aquifers, we identified a total of 939 OICs in groundwater under reducing and circumneutral pH conditions. In comparison to those in water-soluble organic matter (WSOM) in sediments, the OICs in dissolved organic matter (DOM) in groundwater typically contain fewer polycyclic aromatics and polyphenol compounds but more highly unsaturated compounds. Consequently, there were two major sources of geogenic OICs in groundwater: the migration of the OICs from aquifer sediments and abiotic reduction of iodate coupled with DOM iodination under reducing conditions. DOM iodination occurs primarily through the incorporation of reactive iodine that is generated by iodate reduction into highly unsaturated compounds, preferably containing hydrophilic functional groups as binding sites. It leads to elevation of the concentration of the OICs up to 183 µg/L in groundwater. This research provides new insights into the constraints of DOM molecular composition on the mobilization and enrichment of OICs in alluvial-lacustrine aquifers and thus improves our understanding of the genesis of geogenic iodine-contaminated groundwater systems.


Assuntos
Água Subterrânea , Iodo , Poluentes Químicos da Água , Iodatos , Poluentes Químicos da Água/análise , Água Subterrânea/química , Água , Monitoramento Ambiental
3.
J Hazard Mater ; 466: 133640, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309162

RESUMO

The environmental fate of arsenic (As) relies substantially on its speciation, which occurs frequently coupled to the redox transformation of manganese. While trivalent manganese (Mn(III)), which is known for its high reactivity, is believed to play a role in As mobilization by iron (oxyhydr)oxides in dynamic aquifers, the exact roles and underlying mechanisms are still poorly understood. Using increasingly complex batch experiments that mimick As-affected aquifer conditions in combination with time-resolved characterization, we demonstrate that Mn(III)-NOM complexes play a crucial role in the manganese-mediated immobilization of As(III) by ferrihydrite and goethite. Under anaerobic condition, Mn(III)-fulvic acid (FA) rapidly oxidized 31.8% of aqueous As(III) and bound both As(III) and As(V). Furthermore, Mn(III)-FA exerted significantly different effects on the adsorption of As by ferrihydrite and goethite. Mn(III)-FA increased the adsorption of As by 6-16% due to the higher affinity of oxidation-produced As(V) for ferrihydrite under circumneutral conditions. In contrast, As adsorption by crystalline goethite was eventually inhibited due to the competitive effect of Mn(III)-FA. To summarize, our results reveal that Mn(III)-NOM complexes play dual roles in As retention by iron oxides, depending on the their crystallization. This highlights the importance of Mn(III) for the fate of As particularly in redox fluctuating groundwater environments.

4.
Water Res ; 239: 120072, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37207456

RESUMO

Geogenic arsenic (As) contaminated groundwater has been widely accepted associating with dissolved organic matter (DOM) in aquifers, but the underlying enrichment mechanism at molecular-level from a thermodynamic perspective is poorly evidenced. To fill this gap, we contrasted the optical properties and molecular compositions of DOM coupled with hydrochemical and isotopic data in two floodplain aquifer systems with significant As variations along the middle reaches of Yangtze River. Optical properties of DOM indicate that groundwater As concentration is mainly associated with terrestrial humic-like components rather than protein-like components. Molecular signatures show that high As groundwater has lower H/C ratios, but greater DBE, AImod, and NOSC values. With the increase of groundwater As concentration, the relative abundance of CHON3 formulas gradually decreased while that of CHON2 and CHON1 increased, indicating the importance of N-containing organics in As mobility, which is also evidenced by nitrogen isotope and groundwater chemistry. Thermodynamic calculation demonstrated that organic matter with higher NOSC values preferentially favored the reductive dissolution of As-bearing Fe(III) (hydro)oxides minerals and thus promoted As mobility. These findings could provide new insights to decipher organic matter bioavailability in As mobilization from a thermodynamical perspective and are applicable to similar geogenic As-affected floodplain aquifer systems.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Compostos Férricos/análise , Arsênio/análise , Rios/química , Poluentes Químicos da Água/análise , Água Subterrânea/química , Matéria Orgânica Dissolvida , Monitoramento Ambiental
5.
Sci Total Environ ; 878: 163216, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37004762

RESUMO

The organic matter (OM) biodegradation and reductive dissolution of iron oxides have been acknowledged as key factors in the release of geogenic phosphorus (P) to groundwater. However, the coupled effects of natural OM with iron oxides on the mobilization of geogenic P remain unclear. Groundwater with high and low P concentrations has been observed in two boreholes in the alluvial-lacustrine aquifer system of the Central Yangtze River Basin. Sediment samples from these boreholes were examined for their P and Fe species as well as their OM properties. The results show that sediments from borehole S1 with high P levels contain more bioavailable P, particularly iron oxide bound P (Fe-P) and organic P (OP) than those from borehole S2 with low P levels. Regarding borehole S2, Fe-P and OP show positive correlations with total organic carbon as well as amorphous iron oxides (FeOX1), which indicate the presence of Fe-OM-P ternary complexes, further evidenced by FTIR results. In a reducing environment, the protein-like component (C3) and terrestrial humic-like component (C2) will biodegrade. In the process of C3 biodegradation, FeOX1 will act as electron acceptors and then undergo reductive dissolution. In the process of C2 biodegradation, FeOX1 and crystalline iron oxides (FeOX2) will act as electron acceptors. FeOX2 will also act as conduits in the microbial utilization pathway. However, the formation of stable P-Fe-OM ternary complexes will inhibit the reductive dissolution of iron oxides and OM biodegradation, thus inhibiting the mobilization of P. This study provides new insights into the enrichment and mobilization of P in alluvial-lacustrine aquifer systems.

6.
Sci Total Environ ; 814: 151930, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34843759

RESUMO

The biodegradation of organic matter triggers the reductive dissolution of iron oxides with the transformation among iodine species has been mostly accepted as the key iodine mobilization process in groundwater system. However, molecular characteristics of natural organic matter (NOM) and their interaction with iron oxides on geogenic iodine enrichment remain unclear. We used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterize the molecular composition of both dissolved organic matter (DOM) in groundwater and water-soluble organic matter (WSOM) in aquifer sediments being depth-matched with groundwater from monitoring wells in typical iodine-affected aquifers within the central Yangtze River Basin. The results show that WSOM in high-iodine sediments contains more high molecular weight (HMW) organic compounds with higher aromaticity and nominal oxidation state of carbon (NOSC), including polycyclic aromatics, polyphenols and highly unsaturated compounds. These compounds are mostly positively associated with amorphous iron oxides (Feox1) in aquifer sediments. The association between iodine and WSOM is highly consistent with that between amorphous Feox1 and WSOM, but is contrary to that between crystalline iron oxides (Feox2) and WSOM. DOM in groundwater with higher iodine concentration contains more aliphatic compounds and less polyphenols. The complexation of HMW organic compounds of WSOM to iodine-bearing amorphous Feox1 plays an important role in iodine mobilization, which could inhibit the amorphous Feox1 transformation to crystalline Feox2. These observations indicate the biodegradation of HMW organic matter (polycyclic aromatics, polyphenols and highly unsaturated compounds) in WSOM fueling the reductive dissolution of amorphous Feox1 predominantly promotes the release of iodine from aquifer sediments into groundwater. This research provides new insights into the mobilization mechanisms of iodine in alluvial-lacustrine groundwater system controlled by the Fe-OM complexation at the molecular level.


Assuntos
Arsênio , Água Subterrânea , Iodo , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Ferro , Óxidos , Rios , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...