Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17616, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952966

RESUMO

Background: Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods: MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results: We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions: This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Cordão Umbilical , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Humanos , Cordão Umbilical/citologia , Feminino , Tecido Adiposo/citologia , Células Cultivadas , Vilosidades Coriônicas/fisiologia , Âmnio/citologia , Diferenciação Celular
2.
J Asian Nat Prod Res ; : 1-7, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949198

RESUMO

One new canthinone glycoside (1), together with six known compounds (2-7) including three lignans (2-4), two coumarins (5-6) and one phenol (7) was isolated from the root barks of Ailanthus altissima. The structure of new compound 1 was established by the interpretation of UV, IR, MS and NMR data, while its absolute configuration was determined by acid hydrolysis and GIAO NMR calculations with DP4+ probability analysis. The inhibitory effects of all compounds on Nitric oxide (NO) production were investigated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results showed that compounds 2 and 5 displayed NO production inhibitory activity with IC50 values of 30.1 and 15.3 µM, respectively.

3.
Circ Res ; 134(3): 290-306, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38197258

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM. METHODS: Cardiac-specific conditional knockout of Sp1 mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of Sp1 mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ (Myh6 c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM. RESULTS: The cardiac-specific conditional knockout of Sp1 mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, Sp1 knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, Tuft1 was identified as the key target gene of SP1. The hypertrophic phenotypes induced by Sp1 knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs. CONCLUSIONS: Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.


Assuntos
Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Miofibrilas/metabolismo , Miócitos Cardíacos/metabolismo , Cardiomegalia/metabolismo , Fatores de Transcrição/metabolismo , Mamíferos
4.
Chin J Nat Med ; 21(8): 610-618, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37611979

RESUMO

In this study, we presented the isolation and characterization of eight novel seco-guaianolide sesquiterpenoids (1-8) and two known guaianolide derivatives (9 and 10), from the aerial part of Achillea alpina L.. Compounds 1-3 were identified as guaianolides bearing an oxygen insertion at the 2, 3 position, while compounds 4-8 belonged to a group of special 3-nor guaianolide sesquiterpenoids. The structural elucidation of 1-8, including their absolute configurations, were accomplished by a combination of spectroscopic data analysis and quantum electronic circular dichroism (ECD) calculations. To evaluate the potential antidiabetic activity of compounds 1-10, we investigated their effects on glucose consumption in palmitic acid (PA)-mediated HepG2-insulin resistance (IR) cells. Among the tested compounds, compound 7 demonstrated the most pronounced ability to reverse IR. Moreover, a mechanistic investigation revealed that compound 7 exerted its antidiabetic effect by reducing the production of the pro-inflammatory cytokine IL-1ß, which was achieved through the suppression of the NLRP3 pathway.


Assuntos
Hipoglicemiantes , Resistência à Insulina , Humanos , Hipoglicemiantes/farmacologia , Dicroísmo Circular , Citocinas , Glucose , Células Hep G2
5.
Front Cell Dev Biol ; 11: 1208501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534102

RESUMO

The optimization of culture conditions is one of the main strategies to improve the embryo development competence in in vitro fertilization (IVF). Glucose is an important carbon source while also exists in the oviductal fluid in vivo, the effect of glucose in embryo development microenvironment is still unclear. Here we employed the LC-MS to detect and analyze the metabolites in the culture medium of different cleavage stages including 2-Cell, 4-Cell and 8-Cell mouse embryos, respectively. The effects of the external glucose were estimated by measuring the development rate at different glucose concentrations from 0 to 5 mmol/L, and the gene expression changes were detected to explore the potential mechanism after the addition of glucose in the media. Our results indicated the 2-Cell and 8-Cell stages had defined characteristic metabolites, while 4-Cell stage was the transition state. Global and contiguous metabolic characteristics showed the glycometabolism play a critical role at each early cleavage stages during the embryo development. The 8-Cell rates demonstrated the addition of glucose in culture media significantly improve the embryo competence, the highest rate was 87.33% using 3 mmol/L glucose in media, in contrast only 9.95% using the media without glucose. Meanwhile, the blocked embryos were mainly enriched at 2-Cell stage. Further transcriptome study found 3 mmol/L glucose in media remarkably upregulated the gene expression of lipid biosynthesis at 2-Cell stage, the increased lipid was confirmed by nile red staining. These data indicated the glucose may promote the development competence through increasing the lipid biosynthesis to overcoming the 2-Cell block. Our findings were helpful for the further optimization of IVF culture media, as well as the estimation of embryo quality using metabolites in the culture media.

6.
Psychol Rep ; : 332941231181656, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37300806

RESUMO

Previous research demonstrated a positive relationship between strength-based parenting (SBP) and subjective well-being (SWB). However, the underlying mechanisms still need further research. Based on the social cognitive theory and developmental assets framework, we investigated the influence of SBP on college students' SWB through the mediating role of personal growth initiative (PGI) and strengths use. A total of 621 Chinese college students were recruited. Participants completed self-report scales about the SBP, PGI, strengths use and SWB. The results showed that SBP had a positive impact on college students' SWB. On the one hand, PGI and strengths use mediated the above relationship respectively. On the other hand, SBP influenced SWB through the chain mediating effect of PGI and strengths use. The findings indicate that exploring the relationship between SBP and SWB has positive implications for family education and youth development.

7.
Biol Reprod ; 108(5): 709-719, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36892411

RESUMO

With the development of the embryo, the totipotent blastomere undergoes the first lineage decision to the inner cell mass (ICM) and the trophectoderm (TE). The ICM forms the fetus while the TE forms the placenta, which is one of the unique organs in mammals serving as the interface between maternal and fetal bloodstreams. Proper trophoblast lineage differentiation is crucial for correct placental and fetal development, including the TE progenitor self-renewal and its differentiation toward mononuclear cytotrophoblast, which later either develops into invasive extravillous trophoblast, remodeling the uterine vascular, or fuses into multinuclear syncytiotrophoblast, secreting pregnancy-sustaining hormone. Aberrant differentiation and gene expression of trophoblast lineage is associated with severe pregnancy disorders and fetal growth restriction. This review focuses on the early differentiation and key regulatory factors of trophoblast lineage, which have been poorly elucidated. Meanwhile, the recent development of trophoblast stem cells, trophectoderm stem cells, and blastoids derived from pluripotent stem cells bring the accessible model to investigate the profound mystery of embryo implantation and placentation and were also summarized.


Assuntos
Células-Tronco Pluripotentes , Trofoblastos , Animais , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Placenta/metabolismo , Placentação/genética , Diferenciação Celular/genética , Expressão Gênica , Mamíferos
8.
Fitoterapia ; 166: 105472, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36914013

RESUMO

Three new monomeric (1-3) and two newdimeric guaianolides (4 and 5), along with three known analogues (6-8) were isolated from the aerial part of Achillea alpina L. Compounds 1-3 were three novel 1,10-seco-guaianolides, while 4 and 5 were two novel 1,10-seco-guaianolides involved heterodimeric [4 + 2] adducts. The new structures were elucidated by analysis of spectroscopic data and quantum chemical calculations. All isolates were evaluated for their hypoglycemic activity with a glucose consumption model in palmitic acid (PA)-induced HepG2-insulin resistance (IR) cells, and compound 1 showed the most promising activity. A mechanistic study revealed that compound 1 appeared to mediate hypoglycemic activity via inhibition of the ROS/TXNIP/NLRP3/caspase-1 pathway.


Assuntos
Achillea , Sesquiterpenos , Achillea/química , Estrutura Molecular , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química
9.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677712

RESUMO

Background: Homocysteine (Hcy) has been found to be closely related to the occurrence of diabetes mellitus (DM) and is considered as one of the risk factors of DM. However, Hcy alone is not enough as a factor to predict DM, and our study analyzed and determined the relationship between the main metabolites involved in the Hcy metabolic pathway and DM. Methods: A total of 48 clinical samples were collected, including 18 health control samples and 30 DM samples. All standards and samples were detected by LC-QTOF-MS. Multivariate statistical analysis and k-means cluster analysis were performed to screen and confirm the metabolites significantly correlated with DM. Results: A total of 13 metabolites of the Hcy metabolic pathway were detected in the samples. The content of Hcy, cysteine, taurine, pyridoxamine, methionine, and choline were significantly increased in the DM group (p < 0.05). Hcy, choline, cystathionine, methionine, and taurine contributed significantly to the probabilistic principal component analysis (PPCA) model. The odds ratios (OR) of Hcy, cysteine, taurine, methionine, and choline were all greater than one. K-means cluster analysis showed that the Hcy, taurine, methionine, and choline were significantly correlated with the distribution of glucose values (divided into four levels: 10.5−11.7 mmol/L, 7.7−9.7 mmol/L, 6.0−6.9 mmol/L, and 5.0−5.9 mmol/L, respectively). Conclusion: Hcy, taurine, methionine, and choline can be used as risk factors for diabetes diagnosis and are expected to be used for the assessment of diabetes severity.


Assuntos
Diabetes Mellitus , Homocisteína , Humanos , Homocisteína/metabolismo , Cisteína/metabolismo , Metionina/metabolismo , Racemetionina/metabolismo , Colina , Redes e Vias Metabólicas , Taurina
10.
J Asian Nat Prod Res ; 25(4): 316-323, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35771726

RESUMO

Two new guaianolide-type sesquiterpenoids chrysanthemulides K and L (1 and 2), together with six known analogues (3-8), were isolated from an CH2Cl2 extract of the aerial parts of Chrysanthemum indicum. The structures of new compounds 1 and 2 were established by extensive spectroscopic analysis, including UV, IR, MS, NMR and computational electronic circular dichroism (ECD) methods. Inhibitory effects of all compounds on nitric oxide production were investigated in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Results showed that compounds 1-8 displayed NO production inhibitory activity with IC50 values ranged from 3.5 to 34.3 µM.


Assuntos
Chrysanthemum , Sesquiterpenos , Animais , Camundongos , Chrysanthemum/química , Células RAW 264.7 , Sesquiterpenos/química , Extratos Vegetais/farmacologia , Espectroscopia de Ressonância Magnética , Óxido Nítrico , Estrutura Molecular , Lipopolissacarídeos/farmacologia
11.
Front Psychiatry ; 14: 1298380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38260784

RESUMO

Introduction: As the rapid expanding of internet technology, it is necessary to pay attention to the factors that predict Internet addiction. This study aimed to investigate the longitudinal impact of reinforcement sensitivity on internet addiction among college students and the mediating role of self-control. Methods: The study involves two follow-up assessments with a 5-month interval. 383 college students' reinforcement sensitivity, self-control, and internet addiction were measured at two-time points. Results: ①The revised Behavioral Approach System (r-BAS) at Time Point 1 (T1) could predict both T1 and Time Point 2 (T2) internet addiction through the complete mediation of T1 self-control. ②The revised Behavioral Inhibition System (r-BIS) at T1, along with the Fight/Flight/Freeze System (FFFS), can predict T1 and T2 internet addiction through the partial mediation of T1 self-control. Conclusion: Reinforcement sensitivity can predict current and future internet addiction, with self-control playing a mediating role. This study provides longitudinal experimental evidence for the revised Reinforcement Sensitivity Theory (r-RST), further revealing the underlying mechanisms through which reinforcement sensitivity influences internet addiction. Additionally, it has implications for clinical intervention.

12.
Phytochemistry ; 202: 113297, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35803306

RESUMO

Chemical investigation on the aerial part of Achillea alpina L. led to the isolation of twenty sesquiterpenoids. The structures of the undescribed achigermalides A-H were determined by extensive spectroscopic analysis, including NMR, HRESIMS, UV and IR, and their absolute configurations were established by computational electronic circular dichroism (ECD) method. The X-ray crystal structure for 8α-angeloxy-1ß,2ß:4ß,5ß-diepoxy-10ß-hydroxy-6ßH,7αH,11ßH-12,6α-guaianolide was reported for the first time. Glucose consumption was analyzed to investigate the effect of all compounds on palmitic acid (PA)-mediated insulin resistance (IR) in HepG2 cells, and achigermalides D-F, desacetylherbohde A, and 4E,10E-3-(2-methylbutyroyloxy)-germacra-4,10(1)-diene-12,6α-olide appreciably enhanced the glucose consumption at low concentrations of 1.56-6.25 µM. Moreover, achigermalide D decreased the expression of IL-1ß and the generation of reactive oxygen species (ROS), and also down-regulated the protein levels of TXNIP, NLRP3, caspase-1 and NF-κB in the Western blot analysis, suggesting achigermalide D mediated IR via the suppression of NLRP3 inflammasome pathway.


Assuntos
Achillea , Resistência à Insulina , Sesquiterpenos , Achillea/metabolismo , Glucose , Células Hep G2 , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Palmítico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos de Germacrano
13.
J Reprod Immunol ; 153: 103657, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816784

RESUMO

Recurrent implantation failure (RIF) associated with impaired endometrial receptivity and other factors. Disease-specific therapy has yet to be developed due to the lack of understanding of underlying mechanism(s). Herein we investigated the key factors of endometrial receptivity in RIF patients by transcriptomic sequencing. In vitro cellular model was used to delineate the molecular mechanism of key factors on proliferation, invasion and migration of trophoblast cells. SEMA4D was identified as the key factors of endometrial receptivity with significantly lower expression in the mid-secretory endometrium of RIF patients compared with those from normal fertile women. The binding of SEMA4D to its receptor Plexin-B1 on human trophoblast cells HTR-8/SVneo resulted in the activation of Met/PI3K/Akt signaling, which promotes trophoblast cell invasion and migration by enhancing MMP-2 expression. Moreover, the effect of SEMA4D on HTR-8/SVneo could be blocked by knocking down Met with specific siRNA or treating with LY294002. Collectively, our data indicate that decreased expression of SEMA4D in endometrium impair the process of trophoblast invasion and migration through Met/PI3K/Akt pathway, which provides insights into this essential physiological process in the development of RIF.


Assuntos
Fosfatidilinositol 3-Quinases , Trofoblastos , Antígenos CD , Movimento Celular , Feminino , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Semaforinas , Trofoblastos/metabolismo
14.
Nat Prod Res ; 36(7): 1700-1706, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32820643

RESUMO

Investigation into the chemical diversity of Nardostachys chinensis Batal led to the discovery of three new (1-3) and one known (4) iridoid glycosides. Their structures were established through spectroscopic methods including 1 D and 2 D NMR experiments and HRESIMS analysis. Inhibitory effects of 1-4 on nitric oxide production were investigated in lipopolysaccaride (LPS)-mediated RAW 264.7 cells, and they displayed IC50 values in the range 7.8-15.2 µM.


Assuntos
Nardostachys , Animais , Glicosídeos/farmacologia , Glicosídeos Iridoides/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Nardostachys/química , Óxido Nítrico , Células RAW 264.7
15.
J Mol Endocrinol ; 67(3): 107-119, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34270447

RESUMO

Hypothyroidism is a common endocrine disease caused by a deficiency of thyroid hormones, which could affect the hypothalamus-pituitary-gonadal (HPG) axis and cause additional severe fertility problems. However, the pathogenesis of abnormal reproductive capacity caused by hypothyroidism and whether there are differences between females and males need more study. Here, we constructed a prolonged neonatal hypothyroid rat model using 6-propyl-2-thiouracil (PTU). H&E staining and RNA-sequencing were performed to detect histopathological and transcriptome changes. Our results indicated that the numbers of ventromedial hypothalamus nuclei were increased, and the number of pituitary chromophobes was sharply increased, whereas the proportion of pituitary acidophils and pituitary basophils were obviously reduced. The differentially expressed genes of the HPG axis organs were identified, and different tissues shared similar steroid hormone and oxidative stress-related terms in gene ontology analysis. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis indicated oxidative stress, and apoptosis-related genes were more enriched in male hypothyroid pituitaries, whereas the serum levels of growth hormone, follicle-stimulating hormone, and luteinizing hormone that were detected by ELISA were also reduced more in male hypothyroid rats, suggesting that prolonged neonatal hypothyroidism may have a more significant impact on male pituitaries. Moreover, the multi-organ oxidative stress in hypothyroid rats was confirmed by the higher expression of oxidative stress-related genes, such as the Txnip. The increased level of oxidative stress may have contributed to the histopathological and transcriptome changes of HPG axis organs in the prolonged neonatal hypothyroidism rats, especially in male pituitaries.


Assuntos
Suscetibilidade a Doenças , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotireoidismo/etiologia , Hipotireoidismo/metabolismo , Estresse Oxidativo , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hormônios Esteroides Gonadais/sangue , Hormônios Esteroides Gonadais/metabolismo , Hipotireoidismo/patologia , Imuno-Histoquímica , Masculino , Ratos , Fatores Sexuais , Transcriptoma
16.
PeerJ ; 9: e11045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868805

RESUMO

BACKGROUND: Endometriosis is a common gynecological disease among women in their reproductive years. Although much effort has been made, the pathogenesis of this disease and the detailed differences between eutopic endometrial cells and ectopic endometrial cells are still unclear. METHODS: In this study, eutopic and ectopic endometrial cells were collected from patients with and without endometriosis and RNA sequencing was performed. The gene expression patterns and differentially expressed genes (DEGs) in eutopic and ectopic endometrial cells, as well as control endometrial cells, were analyzed using a weighted gene co-expression network analysis (WGCNA) and the DESeq2 package. The functions of significant genes were detected using Gene ontology (GO) enrichment analysis, and qRT-PCR validation was performed. RESULTS: The results indicated that eight gene modules were found among these three groups. They also indicated that the gene module, which is highly related to eutopic endometrial cells, was mainly enriched in cell adhesion, embryo implantation, etc., while the gene module related to ectopic endometrial cells was mainly enriched in cell migration, etc. The results of differential expression analysis were generally consistent with the WGCNA results through identified significant DEGs between different groups. These DEGs may play an important role in the occurrence of endometriosis, including the infertility associated gene ARNTL and PIWIL2, tissue remodeling gene MMP11, cell survival and migration gene FLT1, inflammatory response gene GNLY, the tumor suppressor genes PLCD1, etc. Further analysis suggested the function of adhesion is stronger in ectopic endometrial cells than in eutopic endometrial cells, while the ectopic endometrium may have a higher potential risk of malignant transformation than eutopic endometrium. CONCLUSIONS: Overall, these data provide a reference for understanding the pathogenesis of endometriosis and its relationship with malignant transformation.

17.
Life (Basel) ; 11(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919335

RESUMO

In humans, the maternal endometrium participates in the physical and physiological interaction with the blastocyst to begin implantation. A bidirectional crosstalk is critical for normal implantation and then a successful pregnancy. While several studies have used animal models or cell lines to study this step, little knowledge was acquired to address the role of endometrial cells in humans. Here, we analyzed single-cell sequencing data from a previous study including 24 non-coculture endometrial stromal cells (EmSCs) and 57 EmSCs after coculture with embryos. We further explored the transcriptomic changes in EmSCs and their interactions with trophoblast cells after coculture. Differentially expressed gene (DEG) analysis showed 1783 upregulated genes and 569 downregulated genes in the cocultured embryos. Weight gene coexpression network and gene ontology analysis of these DEGs showed a higher expression of RAMP1, LTBP1, and LRP1 in EmSCs after coculture, indicating the enrichment of biological processes in blood vessel development and female pregnancy. These data imply that EmSCs start blood vessel development at the implantation stage. Compared with endometrium data in vivo at the implantation window, key pathways including epithelial cell development and oxygen response were involved at this stage. Further analysis using CellphoneDB shed light on the interactions between EmSCs and embryonic trophoblasts, suggesting the important role of integrins and fibroblast growth factor pathways during implantation. Taken together, our work reveals the synchronization signaling and pathways happening at the implantation stage involving the acquisition of receptivity in EmSCs and the interaction between EmSCs and trophoblast cells.

18.
Cell Res ; 31(9): 951-964, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33824424

RESUMO

As an excitatory transmitter system, the glutamatergic transmitter system controls excitability and conductivity of neurons. Since both cardiomyocytes and neurons are excitable cells, we hypothesized that cardiomyocytes may also be regulated by a similar system. Here, we have demonstrated that atrial cardiomyocytes have an intrinsic glutamatergic transmitter system, which regulates the generation and propagation of action potentials. First, there are abundant vesicles containing glutamate beneath the plasma membrane of rat atrial cardiomyocytes. Second, rat atrial cardiomyocytes express key elements of the glutamatergic transmitter system, such as the glutamate metabolic enzyme, ionotropic glutamate receptors (iGluRs), and glutamate transporters. Third, iGluR agonists evoke iGluR-gated currents and decrease the threshold of electrical excitability in rat atrial cardiomyocytes. Fourth, iGluR antagonists strikingly attenuate the conduction velocity of electrical impulses in rat atrial myocardium both in vitro and in vivo. Knockdown of GRIA3 or GRIN1, two highly expressed iGluR subtypes in atria, drastically decreased the excitatory firing rate and slowed down the electrical conduction velocity in cultured human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocyte monolayers. Finally, iGluR antagonists effectively prevent and terminate atrial fibrillation in a rat isolated heart model. In addition, the key elements of the glutamatergic transmitter system are also present and show electrophysiological functions in human atrial cardiomyocytes. In conclusion, our data reveal an intrinsic glutamatergic transmitter system directly modulating excitability and conductivity of atrial cardiomyocytes through controlling iGluR-gated currents. Manipulation of this system may open potential new avenues for therapeutic intervention of cardiac arrhythmias.


Assuntos
Fibrilação Atrial , Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Animais , Átrios do Coração , Humanos , Miócitos Cardíacos , Ratos
19.
Protein Cell ; 12(7): 545-556, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33548033

RESUMO

Activation of the heart normally begins in the sinoatrial node (SAN). Electrical impulses spontaneously released by SAN pacemaker cells (SANPCs) trigger the contraction of the heart. However, the cellular nature of SANPCs remains controversial. Here, we report that SANPCs exhibit glutamatergic neuron-like properties. By comparing the single-cell transcriptome of SANPCs with that of cells from primary visual cortex in mouse, we found that SANPCs co-clustered with cortical neurons. Tissue and cellular imaging confirmed that SANPCs contained key elements of glutamatergic neurotransmitter system, expressing genes encoding glutamate synthesis pathway (Gls), ionotropic and metabotropic glutamate receptors (Grina, Gria3, Grm1 and Grm5), and glutamate transporters (Slc17a7). SANPCs highly expressed cell markers of glutamatergic neurons (Snap25 and Slc17a7), whereas Gad1, a marker of GABAergic neurons, was negative. Functional studies revealed that inhibition of glutamate receptors or transporters reduced spontaneous pacing frequency of isolated SAN tissues and spontaneous Ca2+ transients frequency in single SANPC. Collectively, our work suggests that SANPCs share dominant biological properties with glutamatergic neurons, and the glutamatergic neurotransmitter system may act as an intrinsic regulation module of heart rhythm, which provides a potential intervention target for pacemaker cell-associated arrhythmias.


Assuntos
Relógios Biológicos/genética , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Córtex Visual Primário/metabolismo , Nó Sinoatrial/metabolismo , Transcriptoma , Potenciais de Ação/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/classificação , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Córtex Visual Primário/citologia , Receptores Ionotrópicos de Glutamato/classificação , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de Glutamato Metabotrópico/classificação , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Análise de Célula Única , Nó Sinoatrial/citologia , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo
20.
Nat Commun ; 12(1): 287, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436583

RESUMO

Bioelectrical impulses intrinsically generated within the sinoatrial node (SAN) trigger the contraction of the heart in mammals. Though discovered over a century ago, the molecular and cellular features of the SAN that underpin its critical function in the heart are uncharted territory. Here, we identify four distinct transcriptional clusters by single-cell RNA sequencing in the mouse SAN. Functional analysis of differentially expressed genes identifies a core cell cluster enriched in the electrogenic genes. The similar cellular features are also observed in the SAN from both rabbit and cynomolgus monkey. Notably, Vsnl1, a core cell cluster marker in mouse, is abundantly expressed in SAN, but is barely detectable in atrium or ventricle, suggesting that Vsnl1 is a potential SAN marker. Importantly, deficiency of Vsnl1 not only reduces the beating rate of human induced pluripotent stem cell - derived cardiomyocytes (hiPSC-CMs) but also the heart rate of mice. Furthermore, weighted gene co-expression network analysis (WGCNA) unveiled the core gene regulation network governing the function of the SAN in mice. Overall, these findings reveal the whole transcriptome profiling of the SAN at single-cell resolution, representing an advance toward understanding of both the biology and the pathology of SAN.


Assuntos
Mamíferos/genética , Análise de Sequência de RNA , Análise de Célula Única , Nó Sinoatrial/citologia , Animais , Relógios Biológicos , Agregação Celular , Análise por Conglomerados , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Frequência Cardíaca , Células-Tronco Pluripotentes Induzidas/citologia , Macaca fascicularis , Camundongos , Miócitos Cardíacos/metabolismo , Neurocalcina/deficiência , Neurocalcina/metabolismo , Coelhos , Especificidade da Espécie , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...