Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 279: 116480, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772146

RESUMO

Microcystins (MCs) are toxic to the central nervous system of mammals. However, the direct toxicity of MCs on mammalian brain cells and the involved molecular mechanisms are not fully elucidated. Here, we incubated primary astrocytes, the major glial cell-type in the brain, with 0-12.5 µM concentrations of MC-LR for 48 h, and the impairment was evaluated. We found that MC-LR caused significant increases in the cell viability at the range of 0.05-1 µM concentrations with the highest density at 0.1 µM concentration. Treatment with 0.1 µM MC-LR induced YAP nuclear translocation and decreased the ratio of p-YAP to YAP. It also decreased mRNA levels of the upstream regulator (AMOT), and enhanced expressions of YAP interacted genes (Egfr, Tead1, and Ctgf) in primary astrocytes. Overexpression of AMOT significantly attenuated the increase of MC-LR-induced astrocyte proliferation and the expression of YAP downstream genes. These results indicate that Hippo signaling contributed to MC-LR-caused astrocyte proliferation. Further, reactive astrogliosis was observed in the mice brain after MC-LR exposure to environmentally relevant concentrations (20 or 100 µg/L) through drinking water for 16 weeks. Pathological observations revealed that 100 µg/L MC-LR exposure caused neuronal damages with characteristics of shrunken or vacuolation in the region of the cerebral cortex, striatum and cerebellum. These results were accompanied with increased oxidative stress and inflammatory response. Our data reveal the potential astrocytic mechanisms in MC-induced neurotoxicity and raise an alarm for neurodegenerative disease risk following daily exposure to MC-LR.

2.
Environ Res ; 241: 117597, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939808

RESUMO

Since the 2007 water crisis occurred in Lake Taihu, substantial measures have been taken to restore the lake. This study evaluates the effectiveness of these restoration activities. We examined the physicochemical parameters and the distribution of microcystin and Microcystis in both the water column and sediment during the bloom period of May 2020 to October 2020. The mean value of extracellular and intracellular microcystin content was 0.12 µg L-1 and 16.26 µg L-1, respectively. The mean value of microcystin in sediment was 172.02 ng g-1 and peaked in August. The concentration in the water and sediment was significantly lower than the historical average concentration. The abundance of toxigenic Microcystis and total Microcystis in the water column ranged from 2.61 × 102 to 2.25 × 109 copies·L-1 and 8.28 × 105 to 2.76 × 109 copies·L-1, respectively. The proportion of toxic Microcystis in the sediment ranging from 31.2% to 19.12%. The highest and lowest region was Meiliang Bay and Grass-algae type zone, respectively. The copy number of the 16S rRNA gene was 1-4 orders of magnitude higher than that of mcyA gene in populations of Microcystis, indicating that non-toxic Microcystis was the dominant form in the majority of the lake. The abundance of toxic Microcystis in the water column was positively correlated with total phosphorus, PO43--P and pH, while the water temperature played distinct role to the distribution of toxic Microcystis in sediment. Our research indicated phosphorus remains a key factor influencing the toxic Microcystis and microcystins in the water column. pH played distinct roles in the distribution of microcystins in sediment and water column. The increasing water temperature is a threat. Explicit management actions and policies, which take into account nutrient concentrations, pH, and increasing temperatures, are necessary to understand and control the distribution of microcystin and Microcystis in Lake Taihu.


Assuntos
Água Potável , Microcystis , Lagos/química , Microcistinas , RNA Ribossômico 16S/genética , Microcystis/genética , Fósforo/análise , China
3.
Water Res ; 245: 120575, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688853

RESUMO

Aquatic plants are potentially impacted by microcystins (MCs) in lakes experiencing harmful algal blooms. However, how these plants respond, and possibly adapt to osmotic stress caused by MCs is unclear. Vallisneria natans is a pioneer taxon with a global distribution in eutrophic lakes. In this study, we investigated the effect of MC-LR on morphological structure, water retention, osmoregulatory ability, and homeostasis of calcium (Ca2+) and potassium (K+) ions in V. natans leaves. Results showed that the morphological changes caused by MC-LR included increased volumes of epidermal and mesophyll cells, changes in their lignification level, and the degradation of chloroplast structure and dissolution of starch granules. The increased moisture content and water potential with MC-LR concentration were consistent with the occurrence of osmotic stress, and the decreased osmotic potential implied the activation of osmoregulation. Soluble sugar and free amino acid concentrations increased at MC-LR treatments ≥10 µg/L, while inorganic ion K+ content increased in all MC-LR treatments. Although instantaneous K+inflow and Ca2+outflow occurred at 10 µg/L and 100 µg/L MC-LR, respectively, ≥1 µg/L MC-LR resulted in continuous K+ inflow and Ca2+ outflow within 24 h. Moreover, plasma membrane hyperpolarization was caused by MC-LR, especially at 1 and 10 µg/L. We suggest that Ca2+ efflux served as a signal molecule from the cytoplasmic matrix via Ca2+-ATPase, and the uptake of K+ was activated passively through transporters in response to MC-LR-induced plasma membrane hyperpolarization. Therefore, the uptake of K+ was a part of the response but not an adaptation to MC-LR stress, and is considered the cause for the uptake of water in leaves. Ca2+ and K+ homeostasis of V. natans leaves was disrupted by MC-LR concentrations as low as 1 µg/L, suggesting that aquatic plants in most eutrophic lakes may experience negative impacts such as Ca2+ loss, impacts to cell water balance, and alteration in cellular morphology, due to osmotic stress caused by MC-LR.

4.
Water Res ; 235: 119916, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003114

RESUMO

Harmful algal blooms (HABs) producing toxic metabolites are increasingly threatening environmental and human health worldwide. Unfortunately, long-term process and mechanism triggering HABs remain largely unclear due to the scarcity of temporal monitoring. Retrospective analysis of sedimentary biomarkers using up-to-date chromatography and mass spectrometry techniques provide a potential means to reconstruct the past occurrence of HABs. By combining aliphatic hydrocarbons, photosynthetic pigments, and cyanotoxins, we quantified herein century-long changes in abundance, composition, and variability of phototrophs, particularly toxigenic algal blooms, in China's third largest freshwater Lake Taihu. Our multi-proxy limnological reconstruction revealed an abrupt ecological shift in the 1980s characterized by elevated primary production, Microcystis-dominated cyanobacterial blooms, and exponential microcystin production, in response to nutrient enrichment, climate change, and trophic cascades. The empirical results from ordination analysis and generalized additive models support climate warming and eutrophication synergy through nutrient recycling and their feedback through buoyant cyanobacterial proliferation, which sustain bloom-forming potential and further promote the occurrence of increasingly-toxic cyanotoxins (e.g., microcystin-LR) in Lake Taihu. Moreover, temporal variability of the lake ecosystem quantified using variance and rate of change metrics rose continuously after state change, indicating increased ecological vulnerability and declined resilience following blooms and warming. With the persistent legacy effects of lake eutrophication, nutrient reduction efforts mitigating toxic HABs probably be overwhelmed by climate change effects, emphasizing the need for more aggressive and integrated environmental strategies.


Assuntos
Cianobactérias , Proliferação Nociva de Algas , Humanos , Ecossistema , Estudos Retrospectivos , Eutrofização , Lagos/química , Biomarcadores , China
5.
J Environ Sci (China) ; 126: 1-16, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503739

RESUMO

To understand the long-term performance of bioretention systems under sulfamethoxazole (SMX) stress, an unplanted bioretention system (BRS) and two modified BRSs with coconut-shell activated carbon (CAC) and CAC/zero-valent-iron (Fe0) granules (CAC-BRS and Fe/CAC-BRS) were established. Both CAC-BRS and Fe/CAC-BRS significantly outperformed BRS in removing total nitrogen (TN) (CAC-BRS: 82.48%; Fe/CAC-BRS: 78.08%; BRS: 47.51%), total phosphorous (TP) (CAC-BRS: 79.36%; Fe/CAC-BRS: 98.26%; BRS: 41.99%), and SMX (CAC-BRS: 99.74%, Fe/CAC-BRS: 99.80%; BRS: 23.05%) under the long-term SMX exposure (0.8 mg/L, 205 days). High-throughput sequencing revealed that the microbial community structures of the three BRSs shifted greatly in upper zones after SMX exposure. Key functional genera, dominantly Nitrospira, Rhodoplanes, Desulfomicrobium, Geobacter, were identified by combining the functional prediction by the FAPROTAX database with the dominant genera. The higher abundance of nitrogen functional genes (nirK, nirS and nosZ) in CAC-BRS and Fe/CAC-BRS might explain the more efficient TN removal in these two systems. Furthermore, the relative abundance of antibiotic-resistant genes (ARGs) sulI and sulII increased in all BRSs along with SMX exposure, suggesting the selection of bacteria containing sul genes. Substrates tended to become reservoirs of sul genes. Also, co-occurrence network analysis revealed distinct potential host genera of ARGs between upper and lower zones. Notably, Fe/CAC-BRS succeeded to reduce the effluent sul genes by 1-2 orders of magnitude, followed by CAC-BRS after 205-day exposure. This study demonstrated that substrate modification was crucial to maintain highly efficient nutrients and SMX removals, and ultimately extend the service life of BRSs in treating SMX wastewater.


Assuntos
Microbiota , Fósforo , Nitrogênio , Sulfametoxazol , Bactérias/genética , Antibacterianos
6.
J Environ Sci (China) ; 127: 1-14, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522044

RESUMO

Understanding the history of microcystins (MCs) pollution in large lakes can help inform future lake management. We collected sediment cores from Lake Taihu to: investigate the long-term record of MCs (MC-LR, MC-YR, and MC-RR), explore the main environmental drivers of MCs, and assess their public health and ecological risks. Results showed that MCs content in all cores increased over time. The core from north Taihu had the highest MC concentrations, with an average total MCs (sum of MC-LR, MC-YR, and MC-RR = TMCs) content of (74.31±328.55) ng/g. The core from eastern Taihu showed the lowest average TMCs content of (2.91±3.95) ng/g. PCA showed that sediment MCs at the three sites were positively correlated with sediment chlorophyll-a. MC-LR and MC-YR in northern and western Taihu negatively correlated with both the sediment total organic carbon/sediment total nitrogen ratio (STOC/STN) and water nitrate (NO3--N) concentration, but three MC congeners at eastern Taihu showed positive correlations with water orthophosphate (PO43--P), NO3--N, and STOC/STN. Generalized additive model analysis at each site revealed that NO3--N was the main TMCs driver in northern and western Taihu where phytoplankton dominated, whereas PO43--P was the main TMCs driver in eastern Taihu where macrophytes dominated. At the whole lake scale, total phosphorus (TP) and PO43--P were the most important environmental drivers influencing MCs; TP explained 47.4%, 44.2%, and 47.6% while orthophosphate explained 34.8%, 31.2%, and 34.7% of the deviance on TMCs, MC-LR, and MC-YR, respectively. NO3--N also showed a strong effect on MCs variation, especially on MC-YR. Risk assessment showed that both ecological and public health risk has increased in recent years. We conclude that while control of phosphorus and nitrogen input should be a major focus for future lake management, lake zone-specific management strategies may also be important.


Assuntos
Monitoramento Ambiental , Microcistinas , Microcistinas/análise , Fósforo/análise , Nitrogênio/análise , Medição de Risco , Fosfatos/análise , Água/análise , China
7.
Aquat Toxicol ; 254: 106377, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563584

RESUMO

Aquatic plants play an important role in maintaining lake water status and ecosystem stability, but the effect of the cyanotoxin microcystin (MC) on ion homeostasis in aquatic plants and the resulting adverse consequences remains unclear. This study used non-invasive micro-test technology to detect the effect of MC-LR on homeostasis of calcium (Ca2+) and hydrogen ions (H+) in Vallisneria natans (Lour.) Hara, and examined the relationship between ion homeostasis and physiological indicators. Results showed that 1) MC-LR was enriched in V. natans tissues, with greater absorption in roots than in leaves, and 2) MC-LR induced a sustained and dose-dependent Ca2+ efflux from leaves and recoverable Ca2+ efflux from roots. Although H+-ATPase of leaves and roots was activated by MC-LR, the effluent of H+ from roots and influent of H+ into leaves was enhanced. By affecting the homeostasis of Ca2+ and H+, MC-LR directly or indirectly affected accumulation of nutrients essential for maintaining normal growth: accumulation of nitrogen, magnesium, phosphorus, calcium, iron, and zinc decreased in leaves; calcium, magnesium, and zinc decreased in roots; and potassium showed an increase in both leaves and roots. Microscopy revealed MC-LR results in leaf swelling and reduced accumulation of protein and starch, presumably due to changes in nutrient processes. In addition, efflux of Ca2+ and reduced accumulation of transition metals resulted in decreased ROS levels in leaves and roots. The disruption of ionic homeostasis in aquatic plants can be caused by as small a concentration as 1 µg/L MC-LR, indicating potential ecological impacts caused by microcystin need greater attention.


Assuntos
Microcistinas , Poluentes Químicos da Água , Microcistinas/toxicidade , Cálcio , Prótons , Magnésio , Ecossistema , Poluentes Químicos da Água/toxicidade , Zinco , Homeostase
8.
J Environ Manage ; 326(Pt B): 116833, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435125

RESUMO

Global distribution and health threats of microcystins (MCs) have received much more attention, but there are still significant knowledge gaps in the peak periods and driving factors of MC in different phases of freshwater ecosystems. Thus, we systematically analyzed the annual variation of different MC congeners (-LR, -RR, and -YR, where L, R, and Y respectively represent leucine, arginine, and tyrosine) in particulates, dissolved water, and sediments in three eutrophic bays of Lake Taihu, China. The results indicated that particulate MCs concentration was the highest, followed by dissolved and sediment MC, with the mean concentration of 7.58 µg/L, 1.48 µg/L, and 0.15 µg/g (DW), respectively. Except for particulate MC, the concentrations of the other two types of MC showed significant differences among the three bays. The dominant congeners of the three types of MCs were different, with the highest proportion of MC-LR being observed in sediment MCs and the lowest in particulate MCs. The peak period of the three types of MC was also different, with particulate MCs reaching their peak in July and October, dissolved MCs in May to July and October, and sediment MCs reaching their peak in September. Consistent with our hypothesis, the dynamics of different types of MCs were driven by different environmental factors. Particulate MCs were primarily related to biological parameters, followed by TP and dissolved carbon. By contrast, dissolved MCs strongly correlated with water temperature and dissolved oxygen. While sediment MCs were primarily driven by properties of sediments, followed by different forms of nitrogen in the water column. Our results suggested that particulate and dissolved MCs in northern Lake Taihu pose high health threats, especially in the peak period. Moreover, a more detailed and targeted risk management strategy should be designed to prevent the possible hazards posed by different types of MC.


Assuntos
Lagos , Microcistinas , Água , Ecossistema , Monitoramento Ambiental , Poeira , China
9.
Environ Sci Pollut Res Int ; 29(58): 87132-87143, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35802334

RESUMO

Harmful cyanobacterial blooms are increasing in frequency and severity, which makes their toxic secondary metabolites of microcystins (MCs) have been widely studied, especially in their distribution and influence factors in different habitats. However, the distribution of MCs on the early growth stage of harmful cyanobacteria and its influence factors and risks are still largely unknown. Thus, in the present study, two reservoirs (Lutian Reservoir and Lake Haitang) with different trophic status in China have been studied weekly from March to May in 2018, when the cyanobacteria communities were just in the early growth stage, to investigate the variation of MCs concentration and the relationships between MCs and environmental parameters. During the investigation, Lutian Reservoir and Lake Haitang were found to be mesotrophic and light eutrophic, respectively. In Lutian Reservoir, the concentration of EMCs (extracellular MCs) was obviously higher than that of IMCs (intracellular MCs) with a mean value of 0.323 and 0.264 µg/L, respectively. Meanwhile, the concentration of EMCs also fluctuated more sharply than that of IMCs. Congeners of IMC-YR and EMC-LR were respectively dominant in total concentrations of IMCs and EMCs. Unsurprisingly, in Lake Haitang, the concentrations of IMC and EMC were both significantly higher than that in Lutian Reservoir with a mean concentration of 0.482 and 0.472 µg/L, respectively. Differently, the concentration of MC-YR was dominant in both IMCs and EMCs, followed by MC-LR. In correlation analysis, the IMCs were significantly and positively correlated with the density and biomass of phytoplankton phyla and potential MCs-producing cyanobacteria and the parameters of water temperature (WT), nutrients, and organic matters. Similar results were also observed for EMCs. While the different variations of MCs in the two reservoirs might be primarily caused by the differences in WT, nutrients (especially phosphorus), organic matters, and the composition of MCs-producing cyanobacteria. In addition, the coexistence of the dominant species of Pseudoanabaena sp., which can produce a taste-and-odor compound of 2-methylisoborneol (2-MIB), might have a significant impact on the concentration and toxicity of MCs. Our results suggested that the risks posed by MCs at the early growth stage of cyanobacteria should also deserve our attention, especially in mesotrophic water bodies.


Assuntos
Cianobactérias , Microcistinas , Microcistinas/metabolismo , Monitoramento Ambiental/métodos , Lagos/análise , Água/análise
10.
Toxics ; 10(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35051058

RESUMO

The contamination of heavy metals (Pb, Cr, Hg, Cd, Ni, Cu, Zn, As, and Sb) in the sediments were investigated in Lake Yangcheng, a eutrophic lake in China. Results showed that the average concentrations of each metal in the surface sediments generally exceeded their corresponding background values. Higher values were observed in deeper zones, supporting the retention and accumulation of heavy metals in the core sediments. The spatial distributions of metal averages, pollution load index (PLI), and combined ecological risk index (RI) revealed that ecological risks were highest in the west lake, followed by middle lake, and were lowest in the east section. For the temporal variations of metal contents, the highest concentration was usually observed in the winter. However, the seasonal dynamics of Hg showed a different pattern with higher values in the autumn and lower values in the winter. According to contamination factor (CF), the Hg and Sb contaminations were considerable, while the other metals were moderate contamination. In terms of geoaccumulation index (Igeo) values, sediments were moderately-heavily polluted by Sb and moderately polluted by Hg, Cd, and Ni. Meanwhile, Hg exhibited a considerable health risk, while Cd and Sb were moderate risks, based on single ecological risk index (Er) values. Significant positive correlations among heavy metals and principal component analysis (PCA) indicated that anthropogenic activities were major sources. The source of Sb might be different from other metals, with industrial discharge as the main loading. This study highlighted the urgency of taking measures to prevent Hg, Sb, and Cd pollutions in Lake Yangcheng, especially the west region of this lake.

11.
Sci Total Environ ; 815: 152769, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34990666

RESUMO

In this study, the simultaneous removal effects of electrochemical oxidation with boron-doped diamond anodes at different current densities were tested on Microcystis aeruginosa and sulfamethoxazole. Flow cytometry and non-invasive micro-test technology were applied to study the physiological states of M. aeruginosa and Vallisneria spiralis leaf cells. As the current density increased, the degradation effect of electrochemical oxidation on sulfamethoxazole and microcystin-LR increased and exceeded 60% within 6 h. In addition, population density of M. aeruginosa, fluorescence response of chlorophyll a, and cytoplasmic membrane integrity decreased, whereas the proportion of cells with excessive accumulation of intracellular reactive oxygen species (ROS) increased. The effect of electrochemical oxidation on the cell population of M. aeruginosa continued after the power was turned off. The physiological state of V. spiralis leaf cells was not severely affected at 10 mA/cm2 for 24 h. Higher current intensity and longer electrolysis time would induce apoptosis or necrosis. In order to achieve a higher target pollutant removal effect and simultaneously avoid damage to the lake ecosystem, the current intensity of the electrochemical oxidation device should not exceed 10 mA/cm2, and a single electrolysis treatment should range from 6 h to 24 h.


Assuntos
Microcystis , Clorofila A , Diamante , Ecossistema , Eletrodos , Oxirredução , Sulfametoxazol
12.
J Hazard Mater ; 399: 123021, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937707

RESUMO

Antibiotics can cause severe ecological problems for aquatic ecosystems due to their wide use and incomplete removal. Microcystis aeruginosa was exposed to different levels of erythromycin (ERY) and sulfamethoxazole (SMX) separately to assess their cytotoxic effects on harmful cyanobacteria. The production and release of the toxin MC-LR was measured, and several endpoints were investigated using flow cytometry (FCM) for 7 d. ERY resulted in cell membrane hyperpolarization and a hormesis effect on growth rate and chlorophyll a fluorescence at environmentally relevant concentrations (0.5 and 5 µg/L). Microcystis exhibited elevated photosynthesis and hyperpolarization at 50 and 125 µg/L of SMX. An increase of metabolically non-active cells was observed in either ERY or SMX cultures while stimulation of esterase activity was also found at 7 d. ERY and SMX caused damage of membrane integrity due to the overproduction of ROS, which led to increased release of MC-LR. MC-LR production apparently was induced by ERY (0.5-500 µg/L) and SMX (50 and 125 µg/L). In conclusion, ERY and SMX can disrupt the physiological status of Microcystis cells and stimulate the production and release of MC-LR, which can exacerbate potential risks to water systems.


Assuntos
Microcystis , Clorofila A , Ecossistema , Eritromicina/toxicidade , Toxinas Marinhas , Microcistinas/toxicidade , Sulfametoxazol/toxicidade
13.
Environ Sci Pollut Res Int ; 27(36): 45095-45107, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32779064

RESUMO

The frequent occurrence of microcystins (MCs) in freshwater poses serious threats to the drinking water safety and health of human beings. Although MCs have been detected in individual fresh waters in China, little is known about their occurrence over a large geographic scale. An investigation of 30 subtropical lakes in eastern China was performed during summer 2018 to determine the MCs concentrations in water and their possible risk via direct water consumption to humans, and to assess the associated environmental factors. MCs were detected in 28 of 30 lakes, and the highest mean MCs concentrations occurred in Lake Chaohu (26.7 µg/L), followed by Lake Taihu (3.11 µg/L). MC-LR was the primary variant observed in our study, and MCs were mainly produced by Microcystis, Anabaena (Dolicospermum), and Oscillatoria in these lakes. Replete nitrogen and phosphorus concentrations, irradiance, and stable water column conditions were critical for dominance of MC-producing cyanobacteria and high MCs production in our study. Hazard quotients indicated that human health risk of MCs in most lakes was at moderate or low levels except Lakes Chaohu and Taihu. Nutrient control management is recommended to decrease the likelihood of high MCs production. Finally, we recommend the regional scale thresholds of total nitrogen and total phosphorus concentrations of 1.19 mg/L and 7.14 × 10-2 mg/L, respectively, based on the drinking water guideline of MC-LR (1 µg/L) recommended by World Health Organization. These targets for nutrient control will aid water quality managers to reduce human health risks created by exposure to MCs.


Assuntos
Lagos , Microcystis , China , Monitoramento Ambiental , Humanos , Microcistinas/análise , Medição de Risco
14.
Environ Int ; 138: 105648, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32187572

RESUMO

Microcystins (MCs) produced by cyanobacteria pose serious threats to human health. However, the contribution of long-term exposure to MCs to the development of nonalcoholic fatty liver disease (NAFLD) remains poorly documented. In this study, we estimated the environmental uptake of MCs by a small population of fishers who have lived for many years on Meiliang Bay of Lake Taihu, where cyanobacterial blooms occur frequently. Serum biochemical indices of liver function and their relationships with MC contamination in these people were also investigated. Moreover, to mimic the long-term effects of MC on the livers of fishers, an animal model was established in which mice were exposed to MC-LR at an environmentally relevant level, a reference level (the no-observed adverse effect level, NOAEL), and three times the NOAEL through drinking water for 12 months. We estimated the total daily intake of MCs by fishers through contaminated lake water and food to be 5.95 µg MC-LReq, far exceeding the tolerable daily intake (2.40 µg MC-LReq) proposed by the World Health Organization (WHO). More than 80% of participants had at least one abnormal serum marker. The indices of aspartate aminotransferase (AST)/alanine aminotransferase (ALT), triglyceride (TG), globulin (GLB), and lactate dehydrogenase (LDH) had close positive associations with MC contamination, indicating that both liver damage and lipid metabolism dysfunction were induced by chronic MC exposure. Furthermore, the animal experimental results showed that long-term exposure to MC-LR at the environmentally relevant level led to hepatic steatosis with molecular alterations in circadian rhythm regulation, lipid metabolic processes, and the cell cycle pathway. Exposure to MC-LR at or above the NOAEL worsened the pathological phenotype towards nonalcoholic steatohepatitis disease (NASH) or fibrosis. These results suggest that prolonged exposure to the reference level (NOAEL) of MC-LR could cause severe liver injury to mammals. People with long-term environmental exposure to MCs might be at high risk for developing NAFLD.


Assuntos
Cianobactérias , Hepatopatia Gordurosa não Alcoólica , Animais , Modelos Animais de Doenças , Exposição Ambiental/efeitos adversos , Humanos , Fígado/química , Camundongos , Microcistinas/análise , Microcistinas/toxicidade , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente
15.
Environ Pollut ; 259: 113884, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31918143

RESUMO

High concentrations of microcystins (MCs) in sediment pose a serious hazard to aquatic and terrestrial organisms. Hence, we investigated the seasonal variation of dominant MCs (MC-LR, MC-RR and MC-YR) in sediments of Lake Taihu over four seasons for the first time. Sediment MCs varied seasonally (p < 0.01) with concentrations highest in August and lowest in February. The MCs were dominated by MC-LR (61.47%) with the content ranging from 0.02 to 2.37 µg/g dry weight in sediment. The three MC congeners and their proportions were significantly correlated with latitude and longitude. Meiliang Bay in the north had the highest MCs of all sites, while the eastern part of the lake had a high level especially in August. Variation of MC-LR and MC-RR concentrations was significantly correlated (p < 0.05) with water temperature, dissolved total organic carbon, cyanobacteria density, total suspended solid particles, and total organic carbon and total nitrogen in sediment, while MC-YR was negatively correlated (p < 0.01) with nutrients in the water column and heavy metals in sediments. An ecological risk assessment suggested the MCs already pose significant adverse effects on Potamopyrgus antipodarum; although the adverse effects on humans were weak, children were at greater risk than adults.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Microcistinas , Criança , China , Sedimentos Geológicos/química , Humanos , Lagos/química , Microcistinas/análise , Microcistinas/toxicidade , Medição de Risco , Estações do Ano
16.
Harmful Algae ; 68: 168-177, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28962977

RESUMO

Cyanobacterial harmful algal blooms are prevalent around the world, influencing aquatic organisms and altering the physico-chemical properties in freshwater systems. However, the response of bacterial communities to toxic cyanobacterial blooms and associated microcystins (MC) remain poorly understood even though global concentrations of MC have increased dramatically in the past few decades. To address this issue, the dynamics of bacterial community composition (BCC) in the water column and how BCC is influenced by both harmful cyanobacterial blooms and environmental factors were investigated on a monthly basis from August 2013 to July 2014 in Lake Taihu, China. Non-metric multidimensional scaling (NMDS) revealed that seasonal variation in BCC was significant, and that the succession of BCC greatly depends on changes in environmental conditions. Redundancy analysis (RDA) results showed that the overall variation of BCC was explained mainly by dissolved oxygen (DO), nitrate nitrogen (NO3--N), and Microcystis. The alpha biodiversity of the bacterial community was different among months with the highest diversity in February and the lowest diversity in October. Furthermore, significant negative relationships were found between alpha biodiversity indices and Microcystis abundance as well as with intracellular MC concentrations, indicating that Microcystis and associated MC may influence the bacterial community structure by reducing its biodiversity. This study shows that potential associations exist between toxic cyanobacterial blooms and bacterial communities but more investigations are needed to obtain a mechanistic understanding of their complex relationships.


Assuntos
Cianobactérias/fisiologia , Proliferação Nociva de Algas/fisiologia , Lagos/microbiologia , Microbiota , Biodiversidade , China , Clorofila A/análise , Microcistinas/análise , Estações do Ano , Fatores de Tempo
17.
Chemosphere ; 184: 299-308, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28601663

RESUMO

Phytoplankton and bacterioplankton are integral components of aquatic food webs and play essential roles in the structure and function of freshwater ecosystems. However, little is known about how phyto- and bacterioplankton may respond synchronously to changing environmental conditions. Thus, we analyzed simultaneously the composition and structure of phyto- and bacterioplankton on a monthly basis over 12 months in cyanobacteria-dominated areas of Lake Taihu and compared their responses to changes in environmental factors. Metric multi-dimensional scaling (mMDS) revealed that the temporal variations of phyto- and bacterioplankton were significant. Time lag analysis (TLA) indicated that the temporal pattern of phytoplankton tended to exhibit convergent dynamics while bacterioplankton showed highly stable or stochastic variation. A significant directional change was found for bacterioplankton at the genus level and the slopes (rate of change) and regression R2 (low stochasticity or stability) were greater if Cyanobacteria were included, suggesting a higher level of instability in the bacterial community at lower taxonomy level. Consequently, phytoplankton responded more rapidly to the change in environmental conditions than bacterioplankton when analyzed at the phylum level, while bacterioplankton were more sensitive at the finer taxonomic resolution in Lake Taihu. Redundancy analysis (RDA) results showed that environmental variables collectively explained 51.0% variance of phytoplankton and 46.7% variance of bacterioplankton, suggesting that environmental conditions have a significant influence on the temporal variations of phyto- and bacterioplankton. Furthermore, variance partitioning indicated that the bacterial community structure was largely explained by water temperature and nitrogen, suggesting that these factors were the primary drivers shaping bacterioplankton.


Assuntos
Cianobactérias/fisiologia , Ecossistema , Fitoplâncton/fisiologia , China , Lagos/microbiologia , Nitrogênio/análise , Temperatura , Fatores de Tempo
18.
Environ Pollut ; 223: 587-594, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28162804

RESUMO

Microcystins (MCs) widely distributed in freshwaters have posed a significant risk to human health. Previous studies have demonstrated that exposure to MC-LR impairs pancreatic islet function, however, the underlying mechanisms still remain unclear. In the present study, we explored the role of endoplasmic reticulum (ER) impairment in ß-cell dysfunction caused by MC-LR. The result showed that MC-LR modified ER morphology evidenced by increased ER amount and size at low doses (15, 30 or 60 µM) and vacuolar and dilated ER ultrastructure at high doses (100 or 200 µM). Also, insulin content showed increased at 15 or 30 µM but declined at 60, 100, or 200 µM, which was highly accordant with ER morphological alteration. Transcriptomic analysis identified a number of factors and several pathways associated with ER protein processing, ER stress, apoptosis, and diabetes mellitus in the cells treated with MC-LR compared with non-treated cells. Furthermore, MC-LR-induced ER stress significantly promoted the expression of PERK/eIF2α and their downstream targets (ATF4, CHOP, and Gadd34), which indicates that PERK-eIF2α-ATF4 pathway is involved in MC-LR-induced insulin deficiency. These results suggest that ER impairment is an important contributor to MC-LR-caused ß-cell failure and provide a new insight into the association between MCs contamination and the occurrence of human diseases.


Assuntos
Toxinas Bacterianas/toxicidade , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Microcistinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus/patologia , Retículo Endoplasmático/ultraestrutura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Humanos , Insulina/deficiência , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Toxinas Marinhas , Ratos , Poluentes Químicos da Água/toxicidade
19.
Sci Rep ; 6: 38722, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934931

RESUMO

It is important to understand what environmental parameters may regulate microcystin (MC) production and congener type. To determine if environmental conditions in two hydraulically connected lakes can influence MC production and congener ratios, we incubated dialysis bags containing phytoplankton from mesotrophic/eutrophic Muskegon Lake into hypereutrophic Bear Lake (Michigan, USA) and vice versa. Strong cyanobacteria growth was observed in all dialysis bags with Bear Lake phytoplankton in July and August. Phytoplankton communities were dominated by Aphanizomenon aphanizomenoides, Microcystis wesenbergii, Limnothrix redekei. MC concentrations were correlated with M. wesenbergii and A. aphanizomenoides biovolume. MC concentrations in bags incubated in the Muskegon Lake with Bear Lake water were significantly higher than the other bags. The higher light intensity and total nitrogen concentration may have caused the increase of MC production. The MC-LR/MC-RR ratios varied with sample origin but not with lake of incubation, indicating that physical environmental factors (water temperature and turbidity) were not the reasons for different toxin production ratios. Differences in total phosphorus concentrations might be one reason for the dissimilarity of the MC-LR/MC-RR ratio between the two lakes. The higher light intensity and NO3-N concentration in Muskegon Lake are two factors contributing to an increase of MC production.

20.
Sci Rep ; 6: 31097, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27499175

RESUMO

Although there have been numerous studies on microcystin (MC) accumulation in aquatic organisms recently, the bioaccumulation of MCs in relatively small sized organisms, as well as potential influencing factors, has been rarely studied. Thus, in this study, we investigated the bioaccumulation of three MC congeners (-LR, -RR and -YR) in the chironomid larvae of Tanypus chinensis (an excellent food source for certain fishes), the potential sources of these MCs, and potentially relevant environmental parameters over the course of one year in Lake Taihu, China. MC concentrations in T. chinensis varied temporally with highest concentrations during the warmest months (except August 2013) and very low concentrations during the remaining months. Among the three potential MC sources, only intracellular MCs were significantly and positively correlated with MCs in T. chinensis. Although MC concentrations in T. chinensis significantly correlated with a series of physicochemical parameters of water column, cyanobacteria species explained the most variability of MC accumulation, with the rest primarily explained by extraMC-LR. These results indicated that ingestion of MC-producing algae of cyanobacteria accounted for most of the MC that accumulated in T. chinensis. The high MC concentrations in T. chinensis may pose a potential health threat to humans through trophic transfer.


Assuntos
Chironomidae/metabolismo , Microcistinas/metabolismo , Animais , China , Cianobactérias/crescimento & desenvolvimento , Eutrofização , Lagos/química , Lagos/microbiologia , Larva/metabolismo , Estações do Ano , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...