Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 173277, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754510

RESUMO

As an important precursor of secondary inorganic aerosols (SIAs), ammonia (NH3) plays a key role in fine particulate matter (PM2.5) formation. In order to investigate its impacts on haze formation in the North China Plain (NCP) during winter, NH3 concentrations were observed at a high-temporal resolution of 1 min by using the SP-DOAS in Tai'an from December 2021 to February 2022. During the observation period, the average NH3 concentration was 11.84 ± 5.9 ppbv, and it was determined as an ammonia-rich environment during different air quality conditions. Furthermore, the average concentrations of sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) were 9.54 ± 5.97 µg/m3, 19.09 ± 14.18 µg/m3 and 10.72 ± 6.53 µg/m3, respectively. Under the nitrate-dominated atmospheric environment, aerosol liquid water content (ALWC) was crucial for NH3 particle transformation during haze aggravation, and the gas-particle partitioning of ammonia played an important role in the SIAs formation. The reconstruction of the molecular composition further indicated that ammonium nitrate (NH4NO3) plays a dominant role in the increase of PM2.5 during haze events. Consequently, future efforts to mitigate fine particulate pollution in this region should focus on controlling NH4NO3 levels. In ammonia-rich environments, NO3- formation is more dependent on the concentration of nitric acid (HNO3). The sensitive analysis of TNO3 (HNO3 + NO3-) and NHX (NH3 + NH4+) reduction using the thermodynamic model suggested that the NO3- concentration decreases linearly with the reduction of TNO3. And the concentration of NO3- decreases rapidly only when NHX is reduced by 50-60 %. Reducing NOX emissions is the most effective way to alleviate nitrate pollution in this region.

2.
Natl Sci Rev ; 11(4): nwae074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623452

RESUMO

Tropospheric reactive bromine is important for atmospheric chemistry, regional air pollution, and global climate. Previous studies have reported measurements of atmospheric reactive bromine species in different environments, and proposed their main sources, e.g. sea-salt aerosol (SSA), oceanic biogenic activity, polar snow/ice, and volcanoes. Typhoons and other strong cyclonic activities (e.g. hurricanes) induce abrupt changes in different earth system processes, causing widespread destructive effects. However, the role of typhoons in regulating reactive bromine abundance and sources remains unexplored. Here, we report field observations of bromine oxide (BrO), a critical indicator of reactive bromine, on the Huaniao Island (HNI) in the East China Sea in July 2018. We observed high levels of BrO below 500 m with a daytime average of 9.7 ± 4.2 pptv and a peak value of ∼26 pptv under the influence of a typhoon. Our field measurements, supported by model simulations, suggest that the typhoon-induced drastic increase in wind speed amplifies the emission of SSA, significantly enhancing the activation of reactive bromine from SSA debromination. We also detected enhanced BrO mixing ratios under high NOx conditions (ppbv level) suggesting a potential pollution-induced mechanism of bromine release from SSA. Such elevated levels of atmospheric bromine noticeably increase ozone destruction by as much as ∼40% across the East China Sea. Considering the high frequency of cyclonic activity in the northern hemisphere, reactive bromine chemistry is expected to play a more important role than previously thought in affecting coastal air quality and atmospheric oxidation capacity. We suggest that models need to consider the hitherto overlooked typhoon- and pollution-mediated increase in reactive bromine levels when assessing the synergic effects of cyclonic activities on the earth system.

3.
Environ Sci Technol ; 58(17): 7433-7444, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629952

RESUMO

Ozone (O3) profiles are crucial for comprehending the intricate interplay among O3 sources, sinks, and transport. However, conventional O3 monitoring approaches often suffer from limitations such as low spatiotemporal resolution, high cost, and cumbersome procedures. Here, we propose a novel approach that combines multiaxis differential optical absorption spectroscopy (MAX-DOAS) and machine learning (ML) technology. This approach allows the retrieval of O3 profiles with exceptionally high temporal resolution at the minute level and vertical resolution reaching the hundred-meter scale. The ML models are trained using parameters obtained from radiative transfer modeling, MAX-DOAS observations, and a reanalysis data set. To enhance the accuracy of retrieving the aqueous phosphorus from O3, we employ a stacking approach in constructing ML models. The retrieved MAX-DOAS O3 profiles are compared to data from an in situ instrument, lidar, and satellite observation, demonstrating a high level of consistency. The total error of this approach is estimated to be within 25%. On balance, this study is the first ground-based passive remote sensing of high time-height-resolved O3 distribution from ground to the stratopause (0-60 km). It opens up new avenues for enhancing our understanding of the dynamics of O3 in atmospheric environments. Moreover, the cost-effective and portable MAX-DOAS combined with this versatile profiling approach enables the potential for stereoscopic observations of various trace gases across multiple platforms.


Assuntos
Aprendizado de Máquina , Ozônio , Monitoramento Ambiental/métodos
4.
RSC Adv ; 14(13): 9072-9079, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38500616

RESUMO

CuI films present promising optoelectronic properties for transparent conductors. However, the high hole concentration in CuI films hinders the controllable modulation of hole mobility, limiting their application in low-dimensional thin-film transistors. In this study, CuI films were prepared through a Cu film iodination method at room temperature, and a systematic investigation was conducted on the modulation of hole concentration and mobility with varying film thickness. The films exhibited a zinc blende structure (γ-phase) with increasing grain size as the thickness increased. The transmittance and optical bandgap of the films decreased with increasing thickness. The correlation of vacancy concentration with changing film thickness was analyzed through photoluminescence spectroscopy, revealing the influence of grain boundary migration on vacancy formation. The reduction in film thickness diminishes the migration of CuI grain boundaries, consequently reducing the probability of Cu vacancy and I vacancy formation, resulting in diminished hole concentration and enhanced hole mobility and film conductivity. The film with a thickness of 20 nm demonstrated optimal performance, with a transmittance of 90%, hole concentration of 4.09 × 1017 cm-3, hole mobility of 506.50 cm2 V-1 s-1, and conductivity of 33.19 S cm-1. This work deepens the understanding of hole transport such as hole concentration and mobility modulation in CuI films, highlighting the importance of controlling grain boundary migration during the film growth process.

5.
J Environ Sci (China) ; 123: 3-14, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36521992

RESUMO

Currently, the three-dimensional (3D) distribution and characteristics of air pollution cannot be understood based on the application of any single atmospheric monitoring technology. Long-term, high-precision and large-scale 3D atmospheric monitoring might become practical by combining heterogeneous modern technologies; for this purpose, the Space-Air-Ground integrated system is a promising concept. In this system, optical remote sensing technologies employing fixed or mobile platforms are used as the main means for ground-based observations. Tethered balloons, unmanned aerial vehicles (UAV) and airborne platforms serve as the air-based observation segment. The final part, satellite remote sensing, corresponds to space-based observations. Aside from obtaining the 3D distribution of air pollution, research on emission estimation and pollution mechanisms has been extensively implemented based on the strengths of this system or some portion of it. Moreover, further research on the fusion of multi-source data, optimization of inversion algorithms, and coupling with atmospheric models is of great importance to the realization of this system.


Assuntos
Poluição do Ar , Tecnologia de Sensoriamento Remoto , Tecnologia de Sensoriamento Remoto/métodos , Aeronaves
6.
Sci Total Environ ; 858(Pt 1): 159703, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306851

RESUMO

Nitrous acid (HONO) is considered as one of the main sources of the hydroxyl radical (OH), the most relevant oxidant in the atmosphere. Multi-AXis-Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements were conducted to obtain the vertical profiles of aerosol and HONO from November 1, 2020 to January 31, 2021 at a suburb site of Shanghai, China. HONO was mainly distributed near the surface, but high values HONO occasionally occurred around 0.7 km, indicating an unaccounted source of daytime HONO at high altitudes. The positive correlation between HONO and aerosols suggested that the photo-enhanced heterogeneous reactions on the aerosol surface were an important source of daytime HONO at high altitudes. To obtain the vertical distribution of OH production by HONO photolysis (P(OH)HONO), the vertical profiles of photolysis rate of HONO (JHONO) were calculated by establishing a method of combining observations with empirical relationship based on heterogeneous atmospheric and radiative transfer models. The JHONO increased approximately linearly with increasing altitudes and the noontime averages value of JHONO near the ground were 6.68 × 10-4 s-1, which was strongly negatively affected by aerosols in the morning and afternoon. The P(OH)HONO profile varied in different months (November, December, January) that the changes were mainly affected by HONO and JHONO. P(OH)HONO was more positively affected by JHONO at high altitude and noon but greatly influenced by HONO concentrations in the morning and afternoon.


Assuntos
Atmosfera , Ácido Nitroso , China , Ácido Nitroso/análise , Atmosfera/química , Fotólise , Aerossóis
7.
J Geophys Res Atmos ; 127(15): e2021JD036377, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36245640

RESUMO

Responses to the COVID-19 pandemic led to major reductions on air pollutant emissions in modern history. To date, there has been no comprehensive assessment for the impact of lockdowns on the vertical distributions of nitrogen dioxide (NO2) and formaldehyde (HCHO). Based on profiles from 0 to 2 km retrieved by Multi-AXis-Differential Optical Absorption Spectroscopy observation and a large volume of real-time data at a suburb site in Shanghai, China, four types of machine learning models were developed and compared, including multiple linear regression, support vector machine, bagged trees (BT), and artificial neural network. Ultimately BT model was employed to reproduce NO2 and HCHO profiles with the best performance. Predictions with different meteorological and surface pollution scenarios were conducted from 2017 to 2019, for assessing the corresponding impacts on the changes of NO2 and HCHO profiles during COVID-19 lockdown. The simulations illustrate that the NO2 decreased in 2020 by 43.8%, 45.5%, and 44.6%, relative to 2017, 2018, and 2019, respectively. For HCHO, the lockdown-induced situation presented the declines of 28.6%, 32.1%, and 10.9%, respectively. In the comparisons of vertical distributions, NO2 maintained decreasing at all altitudes, while HCHO decreased at low altitudes and increased at high altitudes. During COVID-19 lockdown, the reduction of NO2 and HCHO from the variation of surface pollutants was dominated below 0.5 km, while the relevant meteorological factors played a more significant role above 0.5 km.

8.
Environ Sci Eur ; 34(1): 86, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36097441

RESUMO

Background: The spatiotemporal variation of observed trace gases (NO2, SO2, O3) and particulate matter (PM2.5, PM10) were investigated over cities of Yangtze River Delta (YRD) region including Nanjing, Hefei, Shanghai and Hangzhou. Furthermore, the characteristics of different pollution episodes, i.e., haze events (visibility < 7 km, relative humidity < 80%, and PM2.5 > 40 µg/m3) and complex pollution episodes (PM2.5 > 35 µg/m3 and O3 > 160 µg/m3) were studied over the cities of the YRD region. The impact of China clean air action plan on concentration of aerosols and trace gases is examined. The impacts of trans-boundary pollution and different meteorological conditions were also examined. Results: The highest annual mean concentrations of PM2.5, PM10, NO2 and O3 were found for 2019 over all the cities. The annual mean concentrations of PM2.5, PM10, and NO2 showed continuous declines from 2019 to 2021 due to emission control measures and implementation of the Clean Air Action plan over all the cities of the YRD region. The annual mean O3 levels showed a decline in 2020 over all the cities of YRD region, which is unprecedented since the beginning of the China's National environmental monitoring program since 2013. However, a slight increase in annual O3 was observed in 2021. The highest overall means of PM2.5, PM10, SO2, and NO2 were observed over Hefei, whereas the highest O3 levels were found in Nanjing. Despite the strict control measures, PM2.5 and PM10 concentrations exceeded the Grade-1 National Ambient Air Quality Standards (NAAQS) and WHO (World Health Organization) guidelines over all the cities of the YRD region. The number of haze days was higher in Hefei and Nanjing, whereas the complex pollution episodes or concurrent occurrence of O3 and PM2.5 pollution days were higher in Hangzhou and Shanghai.The in situ data for SO2 and NO2 showed strong correlation with Tropospheric Monitoring Instrument (TROPOMI) satellite data. Conclusions: Despite the observed reductions in primary pollutants concentrations, the secondary pollutants formation is still a concern for major metropolises. The increase in temperature and lower relative humidity favors the accumulation of O3, while low temperature, low wind speeds and lower relative humidity favor the accumulation of primary pollutants. This study depicts different air pollution problems for different cities inside a region. Therefore, there is a dire need to continuous monitoring and analysis of air quality parameters and design city-specific policies and action plans to effectively deal with the metropolitan pollution. Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00668-2.

9.
J Environ Sci (China) ; 120: 63-73, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35623773

RESUMO

As a passive remote sensing technique, MAX-DOAS method was widely used to investigate the vertical profiles of aerosol and trace gases in the lower troposphere. However, the measurements for midlatitude marine boundary layer are rarely reported, especially during the storm weather system. In this study, the MAX-DOAS was used to retrieve the aerosol, HCHO and NO2 vertical distribution at Huaniao Island of East China Sea in summer 2018, during which a strong tropical cyclone developed and passed through the measurement site. The observed aerosol optical depth (AOD), HCHO- and NO2-VCDs (Vertical Column Density) were in the range of 0.19-0.97, (2.57-12.27) × 1015 molec/cm2, (1.24-4.71) × 1015 molec/cm2, which is much higher than remote ocean area due to the short distance to continent. The vertically resolved aerosol extinction coefficient (AEC), HCHO and NO2 presented the decline trend with the increase of height. After the typhoon passing through, the distribution of high levels of aerosol and HCHO stretched to about 1 km and the abundances of the bottom layer were found as double higher than before, reaching 0.51 km-1 and 2.44 ppbv, while NO2 was still constrained within about 300 m with 2.59 ppbv in the bottom layer. The impacts of typhoon process forced air mass were also observed at the suburban site in Shanghai in view of both the aerosol extinction and chemical components. The different changes on air quality associated with typhoon and its mechanism in two different environments: coastal island and coastal city are worthy of further investigation as it frequent occurred in East Asia during summer and fall.


Assuntos
Poluentes Atmosféricos , Tempestades Ciclônicas , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise
10.
Sci Total Environ ; 805: 150363, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818754

RESUMO

Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments were used to carry out observation of aerosol in the urban and suburban areas of Shanghai from October 17 to November 21, 2019. Fudan University (FDU) site is a typical urban environment, surrounded by residential areas, commercial areas and arterial roads, while Dianshan Lake (DSL) site is a suburban environment with high vegetation coverage and no pollutant emission sources. The aerosol retrieved by MAX-DOAS was in good correlation with the observation of sun photometer and the PM2.5 concentration of the corresponding site, which demonstrates that the aerosol retrieved by MAX-DOAS is reliable and feasible. Comparing the mean aerosol extinction coefficient (AEC) profiles during the observation period between urban and suburban areas, it was found that the occurrence of high aerosol concentration at FDU was nearly 3 h later than that of DSL at suburban site. And the aerosol at DSL was concentrated at an altitude of 0.3- 0.5 km, with a mean peak value of 0.486 km-1, which was slightly higher than the peak AEC of 0.453 km-1 at FDU of 0.2- 0.4 km. The difference in aerosol characteristics between the two sites may be due to the fact that the influences of aerosol transport and boundary layer dynamics are different between the two sites. The backward trajectories analysis also presents that there were mutual transports of aerosol between urban and suburban areas, which affect the optical properties of the aerosol in these two sites. In a case of aerosol pollution, we visualized the transport pathway of aerosol from the western part of the North China Plain to Shanghai using AEC profiles and backward trajectories, providing the evidence that the local aerosol pollution in Shanghai was affected by long-distance transport.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Humanos , Estações do Ano
11.
Ecol Evol ; 10(1): 431-440, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31988735

RESUMO

AIM: The aim of this study was to understand the effects of revegetation on the diversity of bacteria and fungi in soil by sowing a single species and exploring the underlying mechanism. LOCATION: Beijing, China. TAXON: Plants and Microbes. METHODS: In a short-term ecological restoration experiment, one natural recovery treatment and three seed sowing treatments were chosen to assess their effects on the alteration of fungal and bacterial diversity. Plant species richness, abundance, and height were investigated. The diversity of fungi and bacteria was analyzed by high-throughput sequencing technologies. Linear mixed-effects model analysis was used to examine the effects of different restoration methods on biodiversity and ecosystem functions. Pearson's correlation analysis, analysis of covariance, and structural equation modeling (SEM) were used to examine the relationship between biodiversity and environmental factors. RESULTS: Species richness and the Shannon-Wiener Index (H') of plants in the sown treatments were lower than in the natural recovery treatment, especially with sowing of Medicago sativa L. Similarly, the sum of the observed species and H' of fungi and bacteria significantly decreased in the sown treatments. Moreover, plant density, community coverage, and soil moisture increased markedly, while soil bulk density decreased in the sown treatments. Importantly, SEM showed that sown treatments reduced the diversity of plants through increasing plant density, while it decreased the diversity of fungi and bacteria through decreasing the plant diversity and increasing soil moisture. MAIN CONCLUSIONS: Our findings confirm that ecological restoration by sowing could improve soil conditions, but may be unfavorable to the amelioration of soil microbial diversity in the short-term. Restoration practitioners should consider long-term studies on the dynamics of biodiversity in the above- and belowground after revegetation by native species to achieve goals related to biodiversity conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA