Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 178: 117260, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116788

RESUMO

The five-year survival rate for patients with hepatocellular carcinoma (HCC) is only 20 %, highlighting the urgent need to identify new therapeutic targets and develop potential therapeutic options to improve patient prognosis. One promising approach is inhibiting autophagy as a strategy for HCC treatment. In this study, we established a virtual docking conformation of the autophagy promoter ULK1 binding XST-14 derivatives. Based on this conformation, we designed and synthesized four series of derivatives. By evaluating their affinity and anti-HCC effects, we confirmed that these compounds exert anti-HCC activity by inhibiting ULK1. The structure-activity relationship was summarized, with derivative A4 showing 10 times higher activity than XST-14 and superior efficacy to sorafenib against HCC. A4 has excellent effect on reducing tumor growth and enhancing sorafenib activity in HepG2 and HCCLM3 cells. Moreover, we verified the therapeutic effect of A4 in sorafenib-resistant HCC cells both in vivo and in vitro. These results suggest that inhibiting ULK1 to regulate autophagy may become a new treatment method for HCC and that A4 will be used as a lead drug for HCC in further research. Overall, A4 shows good drug safety and efficacy, offering hope for prolonging the survival of HCC patients.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Desenho de Fármacos , Indóis , Neoplasias Hepáticas , Inibidores de Proteínas Quinases , Sorafenibe , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Indóis/farmacologia , Indóis/química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Sorafenibe/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Eur J Pharmacol ; 973: 176574, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642670

RESUMO

Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.


Assuntos
Osteogênese , Osteoporose , Transdução de Sinais , Humanos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Animais , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Hedgehog/metabolismo , Terapia de Alvo Molecular , Receptores Notch/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542323

RESUMO

As the global population ages, the number of patients with osteoporosis is rapidly rising. The existing first-line clinical drugs are bone resorption inhibitors that have difficulty restoring the bone mass of elderly patients to the safe range. The range and period of use of existing peptides and monoclonal antibodies are limited, and small-molecule bone formation-promoting drugs are urgently required. We established an I-9 synthesis route with high yield, simple operation, and low cost that was suitable for future large-scale production. I-9 administration promoted bone formation and increased bone mass in mice with low bone mass in an aged C57 mouse model. Our findings revealed a hitherto undescribed pathway involving the BMP2-ERK-ATF4 axis that promotes osteoblast differentiation; I-9 has favorable biosafety in mice. This study systematically investigated the efficacy, safety, and mechanism of I-9 for treating osteoporosis and positions this drug for preclinical research in the future. Thus, this study has promoted the development of small-molecule bone-promoting drugs.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Idoso , Camundongos , Humanos , Animais , Osteogênese , Preparações Farmacêuticas/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Conservadores da Densidade Óssea/uso terapêutico , Peptídeos/metabolismo , Diferenciação Celular , Osteoblastos/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Proteína Morfogenética Óssea 2/metabolismo
4.
Biomed Pharmacother ; 170: 116018, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113628

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal solid malignancies worldwide. Evidence suggests that thrombin stimulates tumor progression via fibrin formation and platelet activation. Meanwhile, we also found a correlation between thrombin and HCC through bioinformatics analysis. Dabigatran is a selective, direct thrombin inhibitor that reversibly binds to thrombin. Dabigatran was used as the lead agent in this study, and 19 dabigatran derivatives were designed and synthesized based on docking mode. The thrombin-inhibitory activity of the derivative AX-2 was slightly better than that of dabigatran. BX-2, a prodrug of AX-2, showed a fairly strong inhibitory effect on thrombin-induced platelet aggregation, and effectively antagonized proliferation of HCC tumor cells induced by thrombin at the cellular level. Furthermore, BX-2 reduced tumor volume, weight, lung metastasis, and secondary tumor occurrence in nude mouse models. BX-2 combined with sorafenib increased sorafenib efficacy. This study lays the foundation for discovering new anti-HCC mechanism based on thrombin. BX-2 can be used as an anti-HCC drug lead for further research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Dabigatrana/farmacologia , Dabigatrana/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Trombina/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico
5.
Nat Commun ; 14(1): 5917, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739936

RESUMO

CSCs (Cancer stem cells) with distinct metabolic features are considered to cause HCC (hepatocellular carcinoma) initiation, metastasis and therapeutic resistance. Here, we perform a metabolic gene CRISPR/Cas9 knockout library screen in tumorspheres derived from HCC cells and find that deletion of SCARB2 suppresses the cancer stem cell-like properties of HCC cells. Knockout of Scarb2 in hepatocytes attenuates HCC initiation and progression in both MYC-driven and DEN (diethylnitrosamine)-induced HCC mouse models. Mechanistically, binding of SCARB2 with MYC promotes MYC acetylation by interfering with HDCA3-mediated MYC deacetylation on lysine 148 and subsequently enhances MYC transcriptional activity. Screening of a database of FDA (Food and Drug Administration)-approved drugs shows Polymyxin B displays high binding affinity for SCARB2 protein, disrupts the SCARB2-MYC interaction, decreases MYC activity, and reduces the tumor burden. Our study identifies SCARB2 as a functional driver of HCC and suggests Polymyxin B-based treatment as a targeted therapeutic option for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Células-Tronco Neoplásicas , Polimixina B , Humanos
7.
J Med Chem ; 66(3): 1742-1760, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36662031

RESUMO

Most patients with senile osteoporosis (SOP) are severely deficient in bone mass, and treatments using bone resorption inhibitors, such as bisphosphonates, have shown limited efficacy. Small-molecule osteogenesis-promoting drugs are required to improve the treatment for this disease. Previously, we demonstrated that a compound with a benzofuran-like structure promoted bone formation by upregulating BMP-2, and it exhibited a therapeutic effect in SAMP-6 mice, glucocorticoid-induced osteoporosis rats, and ovariectomized rats. In this study, aged C57 and SAMP-6 mice models were used to investigate the therapeutic and preventive effects of compound 125 on SOP. scRNA-seq analysis showed that BMP-2 upregulation is the mechanism through which 125 accelerates bone turnover and increases the proportion of osteoblasts. We evaluated the structure-activity relationship of the candidate drugs and found that the derivative I-9 showed significantly higher efficacy than 125 and teriparatide in the zebrafish osteoporosis model. This study provides a foundation for the development of SOP drugs.


Assuntos
Benzofuranos , Osteoporose , Ratos , Camundongos , Animais , Peixe-Zebra , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteogênese , Osteoblastos , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Benzofuranos/química , Relação Estrutura-Atividade
8.
Front Chem ; 10: 1058256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505747

RESUMO

Ovarian cancer (OC) is a gynecological tumor with possibly the worst prognosis, its 5-year survival rate being only 47.4%. The first line of therapy prescribed is chemotherapy consisting of platinum and paclitaxel. The primary reason for treatment failure is drug resistance. FOXM1 protein has been found to be closely associated with drug resistance, and inhibition of FOXM1 expression sensitizes cisplatin-resistant ovarian cancer cells. Combining existing first-line chemotherapy drugs with FOXM1 prolongs the overall survival of patients, therefore, FOXM1 is considered a potential therapeutic target in ovarian cancer. Previous research conducted by our team revealed a highly credible conformation of FOXM1 which enables binding by small molecules. Based on this conformation, the current study conducted virtual screening to determine a new structural skeleton for FOXM1 inhibitors which would enhance their medicinal properties. DZY-4 showed the highest affinity towards FOXM1, and its inhibitory effect on proliferation and migration of ovarian cancer at the cellular level was better than or equal to that of cisplatin, while its efficacy was equivalent to that of cisplatin in a nude mouse model. In this study, the anti-tumor effect of DZY-4 is reported for the first time. DZY-4 shows potential as a drug that can be used for ovarian cancer treatment, as well as a drug lead for future research.

9.
Eur J Med Chem ; 244: 114877, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36334454

RESUMO

FOXM1 signalling pathways are highly expressed in multiple human cancers. Based on the crystal structure of the FOXM1 DNA binding domain, our preliminary research found ethylene glycol (4-benzyloxyphenyl) cyclopentylaminoethyl ether XST20, which could inhibit ovarian cancer cell proliferation and showed a medium affinity for the truncated protein FOXM1. This study intended to develop a FOXM1 inhibitor with stronger affinity and higher efficiency to be utilized as a molecular tool and drug candidate. We evaluated the optimization direction through molecular docking and systematically modified the structure of XST20. A novel class of ethylene glycol phenyl aminoethyl ether derivatives were synthesized, their anticancer activity and mechanism were evaluated, and the structure-activity relationship was summarized. Compound S2 showed a stronger affinity for FOXM1 and improved its activity with a broad-spectrum anticancer effect. S2 displayed selective antiproliferative activity against cancer cells with high expression levels of FOXM1 proteins. S2 should be a good chemobiological tool and a potential leading compound for future studies of anticancer drugs targeting FOXM1.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Simulação de Acoplamento Molecular , Antineoplásicos/química , Proliferação de Células , Etilenoglicóis/farmacologia , Éteres/farmacologia , Linhagem Celular Tumoral , Proteína Forkhead Box M1
10.
Future Med Chem ; 14(24): 1835-1846, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36373543

RESUMO

Background: Given the benzimidazole derivatives have anti-ovarian cancer effects, the authors aimed to determine whether benzimidazole-2-substituted pyridine and phenyl propenone derivatives exert anti-ovarian cancer activity. Materials & methods: 21 derivatives were synthesized and assayed for their antiproliferative activities. Western blotting in A2780 cells was used to detect the effects of compound A-6 on apoptosis-related proteins. Invasion, migration and apoptosis were assayed in SKOV3 cells treated with A-6. The in vivo activity was also examined. Results: A-6 could inhibit proliferation, invasion and migration and induce apoptosis in SKOV3 cells. Additionally, A-6 had potent inhibitory activity in a xenograft mouse model. Conclusion: A-6 shows potent efficacy in the treatment of ovarian cancer and may be a potential antitumor agent.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Benzimidazóis/farmacologia , Piridinas/farmacologia , Piridinas/uso terapêutico , Proliferação de Células
11.
Cell Death Discov ; 8(1): 280, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680842

RESUMO

FOXM1 is a potent oncogenic transcription factor essential for cancer initiation, progression, and drug resistance. FOXM1 regulatory network is a major predictor of adverse outcomes in various human cancers. Inhibition of FOXM1 transcription factor function is a potential strategy in cancer treatment. In this study, we performed structure-based in silico screening to discover small molecules targeting the FOXM1 DNA-binding domain (DBD). Compound XST-20 was identified to effectively suppress FOXM1 transcriptional activities and inhibit ovarian cancer cell proliferation. XST-20 directly interacts with the FOXM1 DNA-binding domain determined by SPR assay. Furthermore, XST-20 was found to significantly reduce the colony-forming efficiency and induce cell cycle arrest and apoptosis. Our study provides a lead compound of FOXM1 inhibitor which may serve as a potential targeted therapy agent for ovarian cancer.

12.
Molecules ; 27(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35565977

RESUMO

There is an urgent need to develop new effective therapies for HCC. Our previous study identified ULK1 as the potential target for HCC therapy and screened the compound XST-14 as a specific inhibitor of ULK1 to suppress HCC progression. However, the poor manufacturability of XST-14 impeded the process of its clinical translation. In this study, we first generated pharmacophore models of ULK1 based on the X-ray structure of UKL1 in complex with ligands. We then screened the Specs chemical library for potential UKL1 inhibitors. By molecular docking, we screened out the 19 compounds through structure-based virtual screening. Through CCK8 activity screening on HCC cells, we found that ZZY-19 displayed obvious cell killing effects on HCC cells. SPR assay indicated that ZZY-19 had a higher binding affinity for ULK1 than XST-14. Moreover, ZZY-19 induced the effects of anti-proliferation, anti-invasion and anti-migration in HCC cells. Mechanistically, ZZY-19 induces autophagy inhibition by reducing the expression of ULK1 on HCC cells. Especially, the combination of ZZY-19 with sorafenib synergistically suppresses the progression of HCC in vivo. Taken together, ZZY-19 was a potential candidate compound that targeted ULK1 and possessed promising anti-HCC activities by inhibiting autophagy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/química , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular
13.
Future Med Chem ; 14(4): 207-219, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34809496

RESUMO

Aim: Given the importance of FOXM1 in the treatment of ovarian cancer, we aimed to identify an excellent specific inhibitor and examined its underlying therapeutic effect. Materials & methods: The binding statistics for FDI-6 with FOXM1 were calculated through computer-aided drug design. We selected XST-119 through virtual screening, performed surface plasmon resonance and in vitro cell antiproliferative activity analysis and evaluated its antitumor efficacy in a mouse model. Results: XST-119 had significantly higher affinity for FOXM1 and antiproliferative activity than FDI-6. XST-119 had a definite inhibitory activity in a xenograft mouse model. Conclusion: We identified XST-119, a FOXM1 inhibitor, with better efficacy for treatment of ovarian cancer. FOXM1 binding sites for small molecules are also highlighted, which may provide the foundation for further drug discovery.


Assuntos
Proteína Forkhead Box M1/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Proteína Forkhead Box M1/metabolismo , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Relação Estrutura-Atividade , Termodinâmica
14.
Drug Des Devel Ther ; 14: 3723-3729, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982177

RESUMO

INTRODUCTION: Hepatitis B virus (HBV) is a global health concern that can cause acute and chronic liver diseases. Thus, there is an urgent need to research novel anti-HBV agents. Our previous reports show that N-phenylbenzamide derivatives exert broad-spectrum antiviral effects against HIV-1, HCV, and EV71 by increasing intracellular levels of APOBEC3G (A3G). As A3G is capable of inhibiting the replication of HBV, we screened the N-phenylbenzamide derivatives against HBV. METHODS: In this study, a new derivative, N-(4-chlorophenyl)-4-methoxy-3-(methylamino) benzamide (IMB-0523), was synthesized and its anti-HBV activity was evaluated in vitro and in vivo. The acute toxicity and pharmacokinetic profiles of IMB-0523 were also investigated. RESULTS: Our results show that IMB-0523 has higher anti-HBV activity in both wild-type HBV (IC50: 1.99 µM) and drug-resistant HBV (IC50: 3.30 µM) than lamivudine (3TC, IC50: 7.37 µM in wild-type HBV, IC50: >440 µM in drug-resistant HBV). The antiviral effect of IMB-0523 against HBV may be due to an increased level of intracellular A3G. IMB-0523 also showed low acute toxicity (LD50: 448 mg/kg) in mice and promising PK properties (AUC0-t: 7535.10±2226.73 µg·h/L) in rats. Further, IMB-0523 showed potent anti-HBV activity in DHBV-infected ducks. CONCLUSION: Thus, IMB-0523 may be a potential anti-HBV agent with different mechanisms than current anti-HBV treatment options.


Assuntos
Antivirais/farmacologia , Benzamidas/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Administração Oral , Animais , Antivirais/síntese química , Antivirais/química , Benzamidas/síntese química , Benzamidas/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Patos , Feminino , Células Hep G2 , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Replicação Viral/efeitos dos fármacos
15.
Eur J Med Chem ; 200: 112465, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480301

RESUMO

The bone morphogenetic protein (BMP) pathway is a promising new target for the design of therapeutic agents for the treatment of low bone mass. This study optimized the structure of the anti-osteoporosis compound 38 by balancing its lipophilicity and improving its stability. Twenty derivatives which were not reported in the literature were designed and synthesized. The ovariectomized rat model of osteoporosis was selected to evaluate the therapeutic effects. Compound 125 showed better therapeutic efficacy than that of 38. We verified the anti-osteoporosis activity and BMP-2 protein upregulation after treatment with 125 in a zebrafish osteoporosis model. We found that 125 improved the ADME properties, therapeutic efficacy, and pharmacokinetics of the drug. Overall, we evaluated the anti-osteoporosis effects of the compounds of this type, preliminarily determined the target patient population, verified the mechanism of action, clarified the level of toxicity, and provided preliminary ADME data. We believe that these compounds can both correct bone loss that is already occurring in patients and have broad clinical applicability.


Assuntos
Benzofuranos/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Modelos Animais de Doenças , Osteoporose/tratamento farmacológico , Tiofenos/farmacologia , Animais , Células CACO-2 , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Osteoporose/cirurgia , Ovariectomia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Peixe-Zebra
16.
Autophagy ; 16(10): 1823-1837, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31986961

RESUMO

Although macroautophagy/autophagy is involved in hepatocellular carcinoma (HCC) initiation and development and has been identified as a mechanism of HCC therapy resistance, the role of ULK1 (unc-51 like autophagy activating kinase 1) in HCC remains unclear. Here, we report that both knockdown and knockout of ULK1 inhibited human HCC cell proliferation and invasion, and Ulk1 deletion abrogated tumor growth in a xenograft mouse model. Furthermore, ULK1 ablation in combination with sorafenib significantly inhibited HCC progression compared with sorafenib treatment alone or vehicle control. To identify candidate ULK1 inhibitors, we used a structure-based virtual docking approach to screen 3428 compounds. Among these compounds, XST-14 showed the highest affinity for the ULK1 protein and specifically blocked ULK1 kinase activity. Moreover, the Lys46, Tyr94 and Asp165 amino acid residues of ULK1 were required for its binding to XST-14 according to molecular docking and mutagenesis experiments. Functional assays revealed that XST-14 blocked autophagy and subsequently induced apoptosis and inhibited growth in HCC cells. More importantly, XST-14 acted synergistically with sorafenib to attenuate HCC progression by inhibiting sorafenib-induced autophagy activation both in vitro and in vivo. In addition, XST-14 was well tolerated and exhibited favorable drug metabolism and pharmacokinetic properties and low toxicity in mice. In summary, our study determined that ULK1 may represent a new therapeutic target for HCC and that targeting ULK1 in combination with sorafenib treatment may serve as a promising interventional strategy for treating HCC. Abbreviations: 3MA: 3-methyladenine; ADV: AutoDock Vina; ATP: adenosine triphosphate; EdU: 5-ethynyl-2'-deoxyuridine; ESI: electrospray ionization; HCC: hepatocellular carcinoma; IC50: half maximal inhibitory concentration; KD: kinase domain; q.o.d., every other day; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SPR, surface plasmon resonance.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/fisiologia , Carcinoma Hepatocelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Hepáticas/metabolismo , Animais , Apoptose , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Células CHO , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Cricetinae , Cricetulus , Progressão da Doença , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Mutagênese , Invasividade Neoplásica , Transplante de Neoplasias , Ratos , Ratos Sprague-Dawley , Sorafenibe/farmacologia
17.
Front Neurosci ; 13: 334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024245

RESUMO

In studies on the treatment of Alzheimer's disease (AD), in which cognition is enhanced even modestly or selectively, it has been considered that the histamine H3 receptor (H3R) may be a potential target. In this study, we aimed at evaluating the ability of 7-pyrrolidinethoxy-4'-methoxyisoflavone (indicated as LC1405), a novel potential H3R antagonist identified from our H3R antagonist screening system, to ameliorate amyloid ß (Aß)-induced cognitive deficits, and to explore the underlying mechanisms that are related to H3R-modulated signaling. Our results demonstrated that LC1405 effectively reduced the progression of Aß-associated disorders, such as improved learning and memory capabilities, preserved tissues from suffering neurodegeneration and ultrastructural abnormalities, and ameliorated cholinergic dysfunction in an APP/PS1 double transgenic mouse model of AD. In an in vitro model, LC1405 protected neuronal cells against copper-induced Aß toxicity, as demonstrated by the improvement in cell viability and decrease in neuronal apoptotic ratio. In addition, treatment with LC1405 resulted in the up-regulation of acetylcholine (ACh) or histamine release and provided neuroprotection through cellular signaling cascades involving H3R-mediated cAMP/CREB and AKT/GSK3ß pathways. Furthermore, the beneficial effects of LC1405 on Aß-mediated toxicity and H3R-mediated cAMP/CREB and AKT/GSK3ß axes were reversed after pharmacological activation of H3R. In conclusion, our results demonstrated that LC1405 blocked Aß-induced toxicity through H3R-modulated signaling transduction both in vitro and in vivo. The results also suggested that LC1405 might have translational potential as a complementary therapy to control disease progression in AD patients who developed cognitive deficits with H3R-related ACh neurotransmission abnormality.

18.
RSC Adv ; 9(15): 8600-8607, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35518710

RESUMO

Cathepsin K (Cat K) is a predominant cysteine protease and highly potent collagenase expressed in osteoclasts. Cat K inhibitors are anti-resorptive agents to treat osteoporosis. A novel scaffold of cathepsin K inhibitors, exemplified by lead compound 1x, was used as the template for designing and synthesizing a total of 61 derivatives that have not been reported before. An exploratory structure-activity relationship analysis identified the potent Cat K inhibitor A22, which displayed an IC50 value of 0.44 µM against Cat K. A22 was very specific for Cat K and caused a significantly higher in vitro inhibition of the enzyme as compared to that of lead compound 1x. A surface plasmon resonance analysis confirmed in vitro binding of A22 to Cat K. Molecular docking studies indicated several favourable interaction sites for A22 within the active pocket of Cat K. Furthermore, A22 also blocked active osteoclasts in vitro and increased spinal bone density in zebrafish, in which it showed an activity that was higher than that of the marketed therapeutic bone metabolizer etidronate disodium. A22 represents a very promising lead compound for the development of novel antiresorptive agents functioning as orthosteric inhibitors of Cat K.

19.
Bioorg Med Chem ; 26(1): 8-16, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29223717

RESUMO

A series of chalcone derivatives bearing benzamide or benzenesulfonamide moieties were synthesized and evaluated for their anti-tumor effect on HCT116, MCF7 and 143B cell lines in vitro. SAR analysis showed that compounds bearing a benzenesulfonamide group had greater potency than those bearing a benzamide group. It was also shown that compounds with a mono-methyl or mono-halogen group at the 3-position on the terminal phenyl ring were more effective than those with trifluoromethyl or methoxy groups. Compound 8e exhibited the most potent anti-tumor activities against HCT116, MCF7 and 143B cell lines, with IC50 values of 0.597, 0.886 and 0.791µM, respectively. Molecular docking studies and enzymatic assays demonstrated that the anti-tumor activity of compound 8e might be regulated by Cat L and Cat K.


Assuntos
Antineoplásicos/farmacologia , Catepsina K/antagonistas & inibidores , Catepsina L/antagonistas & inibidores , Chalcona/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalcona/síntese química , Chalcona/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 114: 328-36, 2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27017265

RESUMO

A series of novel benzimidazole-2-subsituted phenyl or pyridine propyl ketene derivatives were designed and synthesized. The biological activities of these derivatives were then evaluated as potential antitumour agents. These compounds were assayed for growth-inhibitory activity against HCT116, MCF-7 and HepG2 cell lines in vitro. The IC50 values of compounds A1 and A7 against the cancer cells were 0.06-3.64 µM and 0.04-9.80 µM, respectively. Their antiproliferative activities were significantly better than that of 5-Fluorouracil (IC50: 56.96-174.50 µM) and were close to that of Paclitaxel (IC50: 0.026-1.53 µM). The activity of these derivatives was over 100 times more effective than other reported structures of chalcone analogues (licochalcone A). A preliminary mechanistic study suggested that these compounds inhibit p53-MDM2 binding. Compounds A1, A7 and A9 effectively inhibited tumour growth in BALB/c mice with colon carcinoma HCT116 cells. The group administered 200 mg/kg of compound A7 showed a 74.6% tumour growth inhibition with no signs of toxicity at high doses that was similar to the inhibition achieved with the 12.5 mg/kg irinotecan positive control (70.2%). Therefore, this class of benzimidazole-2-subsituted phenyl or pyridine propyl ketene derivatives represents a promising lead structure for the development of possible p53-MDM2 inhibitors as new antitumour agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Desenho de Fármacos , Etilenos/farmacologia , Cetonas/farmacologia , Animais , Antineoplásicos/síntese química , Benzimidazóis/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Etilenos/síntese química , Etilenos/química , Células HCT116 , Células Hep G2 , Humanos , Cetonas/síntese química , Cetonas/química , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA