Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Heliyon ; 10(7): e28914, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601523

RESUMO

Background: This study aimed to assess the feasibility, safety, and accuracy of a low-dose CT fluoroscopy-guided remote-controlled robotic real-time puncture procedure. Methods: The study involved two control groups with Taguchi method: Group A, which underwent low-dose traditional CT-guided manual puncture (blank control), and Group B, which underwent conditional control puncture. Additionally, an experimental group, Group C, underwent CT fluoroscopy-guided remote-controlled robotic real-time puncture. In a phantom experiment, various simulated targets were punctured, while in an animal experiment, attempts were made to puncture targets in different organs of four pigs. The number of needle adjustments, puncture time, total puncture operation time, and radiation dose were analyzed to evaluate the robot system. Results: Successful punctures were achieved for each target, and no complications were observed. Dates were calculated for all parameters using Taguchi method. Conclusion: The low-dose CT fluoroscopy-guided puncture robot system is a safe, feasible, and equally accurate alternative to traditional manual puncture procedures.

2.
Colloids Surf B Biointerfaces ; 236: 113805, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422666

RESUMO

Bone implantation inevitably causes damage to surrounding vasculature, resulting in a hypoxic microenvironment that hinders bone regeneration. Although titanium (Ti)-based devices are widely used as bone implants, their inherent bioinert surface leads to poor osteointegration. Herein, a strontium peroxide (SrO2)-decorated Ti implant, Ti_P@SrO2, was constructed through coating with poly-L-lactic acid (PLLA) to alleviate the hypoxic microenvironment and transform the bioinert surface of the implant into a bioactive surface. PLLA degradation resulted in an acidic microenvironment and the release of SrO2 nanoparticles. The acidic microenvironment then accelerated the decomposition of SrO2, resulting in the release of O2 and Sr ions. O2 released from Ti_P@SrO2 can alleviate the hypoxic microenvironment, thus enhancing cell proliferation in an O2-insufficient microenvironment. Furthermore, under hypoxic and normal microenvironments, Ti_P@SrO2 enhanced alkaline phosphatase activity and bone-related gene expression in C3H10T1/2 cells with the continuous release of Sr ions. Meanwhile, Ti_P@SrO2 suppressed M1 polarization and promoted M2 polarization of bone marrow-derived monocytes under hypoxic and normal conditions. Furthermore, in a rat implantation model, the implant enhanced new bone formation and improved osteointegration after modification with SrO2. In summary, the newly designed O2- and Sr ion-releasing Ti implants are promising for applications in bone defects.


Assuntos
Próteses e Implantes , Titânio , Animais , Ratos , Titânio/farmacologia , Regeneração Óssea , Osso e Ossos , Íons , Osteogênese , Propriedades de Superfície , Estrôncio/farmacologia , Osseointegração
3.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687209

RESUMO

The culinary medicinal mushroom Hericium erinaceus holds significant global esteem and has garnered heightened interest within increasingly ageing societies due to its pronounced neuroprotective and anti-neuroinflammatory properties. Within this study, two novel diterpenes, 16-carboxy-13-epi-neoverrucosane (1) and Erinacine L (2); three known xylosyl cyathane diterpenoids, Erinacine A (3), Erinacine C (4), and Erinacine F (5); and four lanostane-type triterpenoids, and three cyclic dipeptides (10-12), in addition to orcinol (13), were isolated from the rice-based cultivation medium of H. erinaceus. Their structures were determined by NMR, HR-ESI-MS, ECD, and calculated NMR. Compound 1 marks a pioneering discovery as the first verrucosane diterpene originating from basidiomycetes, amplifying the scope of fungal natural product chemistry, and the intricate stereochemistry of Compound 5 has been comprehensively assessed for the first time. Compounds 2-5 not only showed encouraging neurotrophic activity in rat adrenal pheochromocytoma PC-12 cells, but also significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglia cell cultures with IC50 values as low as 5.82 ± 0.18 µM. To elucidate the mechanistic underpinnings of these bioactivities, molecular docking simulation was used to analyze and support the interaction of 1 and 2 with inducible NO synthase (iNOS), respectively. In particular, compound 2, a cyathane-xyloside containing an unconventional hemiacetal moiety, is a compelling candidate for the prevention of neurodegenerative diseases. In summation, this investigation contributes substantively to the panorama of fungal diterpene structural diversity, concurrently furnishing additional empirical substantiation for the role of cyathane diterpenes in the amelioration of neurodegenerative afflictions.


Assuntos
Agaricales , Diterpenos , Animais , Ratos , Simulação de Acoplamento Molecular , Diterpenos/farmacologia
4.
Plant Physiol ; 193(1): 555-577, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37313777

RESUMO

Somatic embryogenesis (SE), like zygotic embryo development, is a progressive process. Early SE is the beginning of a switch from a somatic to an embryogenic state and is an important stage for initiating chromatin reprogramming of SE. Previous studies suggest that changes in chromatin accessibility occur during early SE, although information on the 3D structure of chromatin is not yet available. Here, we present a chromosome-level genome assembly of longan (Dimocarpus longan) using PacBio combined with high-through chromosome conformation capture scaffolding, which resulted in a 446 Mb genome assembly anchored onto 15 scaffolds. During early SE, chromatin was concentrated and then decondensed, and a large number of long terminal repeat retrotransposons (LTR-RTs) were enriched in the local chromatin interaction region, suggesting LTR-RTs were involved in chromatin reorganization. Early SE was accompanied by the transformation from A to B compartments, and the interactions between B compartments were enhanced. Results from chromatin accessibility, monomethylation of histone H3 at lysine 4 (H3K4me1) modification, and transcription analyses further revealed a gene regulatory network for cell wall thickening during SE. Particularly, we found that the H3K4me1 differential peak binding motif showed abnormal activation of ethylene response factor transcription factors and participation in SE. The chromosome-level genomic and multiomics analyses revealed the 3D conformation of chromatin during early SE, providing insight into the molecular mechanisms underlying cell wall thickening and the potential regulatory networks of TFs during early SE in D. longan. These results provide additional clues for revealing the molecular mechanisms of plant SE.


Assuntos
Cromossomos de Plantas , Técnicas de Embriogênese Somática de Plantas , Sapindaceae , Biomarcadores/metabolismo , Parede Celular , Cromatina , Redes Reguladoras de Genes , Genoma de Planta , Código das Histonas , Anotação de Sequência Molecular , Sapindaceae/citologia , Sapindaceae/crescimento & desenvolvimento , Sapindaceae/metabolismo , Transcriptoma
5.
Front Pharmacol ; 14: 1147772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153759

RESUMO

Background: As a novel non-apoptotic cell death, ferroptosis has been reported to play a crucial role in acute kidney injury (AKI), especially cisplatin-induced AKI. Valproic acid (VPA), an inhibitor of histone deacetylase (HDAC) 1 and 2, is used as an antiepileptic drug. Consistent with our data, a few studies have demonstrated that VPA protects against kidney injury in several models, but the detailed mechanism remains unclear. Results: In this study, we found that VPA prevents against cisplatin-induced renal injury via regulating glutathione peroxidase 4 (GPX4) and inhibiting ferroptosis. Our results mainly indicated that ferroptosis presented in tubular epithelial cells of AKI humans and cisplatin-induced AKI mice. VPA or ferrostatin-1 (ferroptosis inhibitor, Fer-1) reduced cisplatin-induced AKI functionally and pathologically, which was characterized by reduced serum creatinine, blood urea nitrogen, and tissue damage in mice. Meanwhile, VPA or Fer-1 treatment in both in vivo and in vitro models, decreased cell death, lipid peroxidation, and expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), reversing downregulation of GPX4. In addition, our study in vitro indicated that GPX4 inhibition by siRNA significantly weakened the protective effect of VPA after cisplatin treatment. Conclusion: Ferroptosis plays an essential role in cisplatin-induced AKI and inhibiting ferroptosis through VPA to protect against renal injury is a viable treatment in cisplatin-induced AKI.

6.
Plant J ; 115(5): 1277-1297, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37235696

RESUMO

Plant embryogenic calli (ECs) can undergo somatic embryogenesis to regenerate plants. This process is mediated by regulatory factors, such as transcription factors and specifically expressed genes, but the precise molecular mechanisms underlying somatic embryogenesis at the single-cell level remain unclear. In this study, we performed high-resolution single-cell RNA sequencing analysis to determine the cellular changes in the EC of the woody plant species Dimocarpus longan (longan) and clarify the continuous cell differentiation trajectories at the transcriptome level. The highly heterogeneous cells in the EC were divided into 12 putative clusters (e.g., proliferating, meristematic, vascular, and epidermal cell clusters). We determined cluster-enriched expression marker genes and found that overexpression of the epidermal cell marker gene GDSL ESTERASE/LIPASE-1 inhibited the hydrolysis of triacylglycerol. In addition, the stability of autophagy was critical for the somatic embryogenesis of longan. The pseudo-timeline analysis elucidated the continuous cell differentiation trajectories from early embryonic cell division to vascular and epidermal cell differentiation during the somatic embryogenesis of longan. Moreover, key transcriptional regulators associated with cell fates were revealed. We found that ETHYLENE RESPONSIVE FACTOR 6 was characterized as a heat-sensitive factor that negatively regulates longan somatic embryogenesis under high-temperature stress conditions. The results of this study provide new spatiotemporal insights into cell division and differentiation during longan somatic embryogenesis at single-cell resolution.


Assuntos
Sapindaceae , Transcriptoma , Transcriptoma/genética , Sapindaceae/genética , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Desenvolvimento Embrionário , Técnicas de Embriogênese Somática de Plantas , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
BMC Genomics ; 24(1): 138, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944911

RESUMO

Longan (Dimocarpus longan Lour.) is an economically important subtropical fruit tree. Its fruit quality and yield are affected by embryo development. As a plant seed germination marker gene, the germin-like protein (GLP) gene plays an important role in embryo development. However, the mechanism underlying the role of the GLP gene in somatic embryos is still unclear. Therefore, we conducted genome-wide identification of the longan GLP (DlGLP) gene and preliminarily verified the function of DlGLP1-5-1. Thirty-five genes were identified as longan GLP genes and divided into 8 subfamilies. Based on transcriptome data and qRT‒PCR results, DlGLP genes exhibited the highest expression levels in the root, and the expression of most DlGLPs was upregulated during the early somatic embryogenesis (SE) in longan and responded to high temperature stress and 2,4-D treatment; eight DlGLP genes were upregulated under MeJA treatment, and four of them were downregulated under ABA treatment. Subcellular localization showed that DlGLP5-8-2 and DlGLP1-5-1 were located in the cytoplasm and extracellular stroma/chloroplast, respectively. Overexpression of DIGLP1-5-1 in the globular embryos (GEs) of longan promoted the accumulation of lignin and decreased the H2O2 content by regulating the activities of ROS-related enzymes. The results provide a reference for the functional analysis of DlGLPs and related research on improving lignin accumulation in the agricultural industry through genetic engineering.


Assuntos
Lignina , Sapindaceae , Lignina/metabolismo , Perfilação da Expressão Gênica/métodos , Peróxido de Hidrogênio/metabolismo
8.
Plant Physiol Biochem ; 195: 362-374, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682137

RESUMO

The early auxin responsive small auxin up-regulated RNA (SAUR) family is an important gene family in the auxin signal transduction pathway. This study focused on the regulatory mechanism of DlSAUR genes during early somatic embryogenesis (SE) and its response to hormone treatment and abiotic stress. Mining of the available Dimocarpus longan Lour. (D. longan) genome sequence yielded 68 putative SAUR genes. Transcript profiles based on RNA-seq data showed that most of the 24 detected DlSAUR genes were highly expressed in the globular embryos (GE) (10) and most of them responded to heat stress and 2,4-D treatment. The results of qRT-PCR showed that most of DlSAUR genes were up-regulated under auxin inhibitor N-1-naphthylphthalamic acid (NPA) and auxin indole-3-acetic acid (IAA) treatments. Moreover, NPA could promote longan SE. The assay for ATAC-seq data analysis showed that chromatin accessibility of 19 of the 24 DlSAUR genes were open during early SE, and most DlSAUR genes differentially expressed during early SE were not associated with H3K4me1 signal enrichment. The DlSAUR32 was selected for subcellular localization and RNA-seq analysis, which encode a cell nuclear-localized protein. Dual-luciferase assays and transient transformation showed that the transcription factors (TFs) DlWRKY75-1 and DlWRKY75-2 might bind to the DlSAUR32 promoters to inhibition gene transcription. Transient overexpression of DlWRKY75-1 and DlWRKY75-2 decreased IAA content in N. benthamiana leaves. Thus, the regulatory network composed of DlSAUR32 and its related TFs may regulate the early longan SE and be involved in the auxin response regulatory pathway of longan.


Assuntos
Reguladores de Crescimento de Plantas , RNA , Reguladores de Crescimento de Plantas/metabolismo , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas
9.
Redox Biol ; 59: 102594, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603528

RESUMO

The potential coexistence of Alzheimer's disease (AD) and atrial fibrillation (AF) is increasingly common as aging-related diseases. However, little is known about mechanisms responsible for atrial remodeling in AD pathogenesis. α7 nicotinic acetylcholine receptors (α7nAChR) has been shown to have profound effects on mitochondrial oxidative stress in both organ diseases. Here, we investigate the role of α7nAChR in mediating the effects of amyloid-ß (Aß) in cultured mouse atrial cardiomyocytes (HL-1 cells) and AD model mice (APP/PS1). In vitro, apoptosis, oxidative stress and mitochondrial dysfunction induced by Aß long-term (72h) in HL-1 cells were prevented by α-Bungarotoxin(α-BTX), an antagonist of α7nAChR. This cardioprotective effect was due to reinstating Ca2+ mishandling by decreasing the activation of CaMKII and MAPK signaling pathway, especially the oxidation of CaMKII (oxi-CaMKII). In vivo studies demonstrated that targeting knockdown of α7nAChR in cardiomyocytes could ameliorate AF progression in late-stage (12 months) APP/PS1 mice. Moreover, α7nAChR deficiency in cardiomyocytes attenuated APP/PS1-mutant induced atrial remodeling characterized by reducing fibrosis, atrial dilation, conduction dysfunction, and inflammatory mediator activities via suppressing oxi-CaMKII/MAPK/AP-1. Taken together, our findings suggest that diminished α7nAChR could rescue Aß-induced atrial remodeling through oxi-CaMKII/MAPK/AP-1-mediated mitochondrial oxidative stress in atrial cells and AD mice.


Assuntos
Doença de Alzheimer , Fibrilação Atrial , Remodelamento Atrial , Animais , Camundongos , Receptor Nicotínico de Acetilcolina alfa7/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
10.
Nanotechnology ; 34(18)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36720154

RESUMO

A Z-scheme Cd0.85Zn0.15S/Co9S8(CZS-CS) photocatalyst was reasonably fabricated by a simple solvothermal method for the effective visible-light-driven H2evolution and organic pollutants degradation. The precise construction of the CZS-CS composites provided an efficient heterogeneous contact interface and abundant reaction sites for the proposed photocatalytic reaction. The homogeneous Co9S8nanocrystals were uniformly wrapped on the surface of Cd0.85Zn0.15S nanorods, forming an intimate-contact interface, markedly contributed to the light collection and effectively inhibited the charge-carrier recombination. The optimized CZS-CS-15 composites exhibited a special H2production rate reaching 19.15 mmol·h-1·g-1, roughly 1915 and 4.5 times of pure Co9S8and Cd0.85Zn0.15S samples and 85% of tetracycline (TC) molecule within 15 min was degraded. Furthermore, trapping experiments confirmed that h+was the main active species for TC photodegradation. Moreover, the obtained photocatalysts manifested stability without apparent activity declines during the proposed reactions. Finally, the Z-scheme photocatalytic mechanism was verified to illustrate the characteristics of efficient charge transfer and high redox ability. This study provided a rational and learnable strategy for designing dual-functional Z-scheme heterojunction photocatalysts.

11.
Front Plant Sci ; 13: 1043464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507400

RESUMO

Introduction: Xyloglucan endotransglucosylase (XET)/hydrolase (XTH) is a cell wall-modifying protein that affects cell expansion and loosening of the cell wall. Results: This study focused on the regulatory mechanism of DlXTH genes during early somatic embryogenesis (SE) and the heat stress response in longan. Mining of the available D. longan genome sequence yielded 25 putative XTH genes. Transcript profiles based on RNA sequencing (RNA-seq) data showed that most of the 17 detected DlXTH genes were highly expressed in the embryogenic callus (EC) (8) and globular embryo (GE) (8), and 13 of them responded significantly to heat stress. The assay for transposase-accessible chromatin sequencing (ATAC-seq) data analysis showed that in terms of chromatin accessibility, 22 of the 25 DlXTH genes were open during early SE, and most of the peak DlXTH genes with transcription differences during early SE were associated with high levels of H3K4me1. The most differentially expressed genes, DlXTH23.5 and DlXTH25, were selected for analysis. According to subcellular localization and quantitative real-time PCR (qRT-PCR) analysis, DlXTH23.5/25, which encode cell membrane-localized proteins, were expressed at the highest level in the GE and significantly responded to heat stress. Dual-luciferase assays and transient transformation showed that the transcription factors (TFs) DlWRKY31, DlERF1, and DlERF5 might bind to the DlXTH23.5/25 promoters to activate gene transcription. Transient overexpression of TFs and DlXTH23.5/25 induced XET activity in Nicotiana benthamiana leaves. Under heat stress in the longan EC, the XET activities and expression levels of TFs and DlXTH23.5/25 were significantly increased, and a high concentration of XET might inhibit longan SE. Discussions: Thus, the regulatory network composed of DlXTH23.5/25 and its related TFs may regulate early longan SE and participate in the regulatory pathway of longan under heat stress via cell wall repair through the action of XET.

12.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430536

RESUMO

Strigolactones (SLs), a new class of plant hormones, are implicated in the regulation of various biological processes. However, the related family members and functions are not identified in longan (Dimocarpus longan Lour.). In this study, 23 genes in the CCD, D27, and SMXL family were identified in the longan genome. The phylogenetic relationships, gene structure, conserved motifs, promoter elements, and transcription factor-binding site predictions were comprehensively analysed. The expression profiles indicated that these genes may play important roles in longan organ development and abiotic stress responses, especially during early somatic embryogenesis (SE). Furthermore, GR24 (synthetic SL analogue) and Tis108 (SL biosynthesis inhibitor) could affect longan early SE by regulating the levels of endogenous IAA (indole-3-acetic acid), JA (jasmonic acid), GA (gibberellin), and ABA (abscisic acid). Overexpression of SMXL6 resulted in inhibition of longan SE by regulating the synthesis of SLs, carotenoids, and IAA levels. This study establishes a foundation for further investigation of SL genes and provides novel insights into their biological functions.


Assuntos
Proteínas de Plantas , Sapindaceae , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sapindaceae/genética , Desenvolvimento Embrionário/genética
13.
Front Immunol ; 13: 1006500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439155

RESUMO

Ovarian clear cell carcinoma has a high recurrence rate with poor prognosis and is generally not sensitive to conventional platinum-based chemotherapy. Its less frequent occurrence of mutations such as BRCA limited the targeted therapies. Immunotherapy is not currently recommended as a first-line agent for ovarian cancer, and most patients are not yet able to benefit from it. Cryoablation can be used to treat solid systemic tumors, including ovarian cancer metastases, and can produce a limited anti-tumor immune response. The anti-tumor effects of cryoablation combined with immunotherapy have not been adequately confirmed. This study reports a case of a patient with ovarian clear cell carcinoma who underwent conventional adjuvant chemotherapy after initially surgical resection of the tumor. Unfortunately, cancer recurred and metastasized to the abdominal wall. After a series of painful chemotherapy and a second surgery, the cancer was still not effectively controlled, and the patient developed extensive metastases in the lung. The patient's PD-L1 expression level also did not support solo immunotherapy. We pioneered the use of cryoablation to first eradicate the most significant lesion in the upper lobe of the left lung and then combined it with the PD-L1 inhibitor pembrolizumab to treat the patient with immunotherapy, which resulted in the complete eradication of the other multiple metastases in the lung and saved the patient's life. Although the precise mechanism of action has not yet been explored, we have reason to believe that the combination of cryoablation and immune checkpoint inhibitor has a powerful synergistic anti-tumor effect, which is yet to be confirmed by more basic research and clinical applications in the next step.


Assuntos
Carcinoma , Criocirurgia , Neoplasias Pulmonares , Neoplasias Ovarianas , Feminino , Humanos , Criocirurgia/métodos , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico , Neoplasias Ovarianas/tratamento farmacológico , Carcinoma/tratamento farmacológico
14.
Front Oncol ; 12: 945123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249062

RESUMO

Irreversible electroporation (IRE) is a soft tissue ablation technique that uses short electrical fields which induce the death of target cells. To evaluate the safety and efficacy of an IRE-based device compared to regular radiofrequency ablation (RFA) of solid liver tumors, in this multicenter, randomized, parallel-arm, non-inferiority study, 152 patients with malignant liver tumors were randomized into IRE (n = 78) and RFA (n = 74) groups. The primary endpoint was the success rate of tumor ablation; the secondary endpoints included the tumor ablation time, complications, tumor recurrence rates and treatment-related adverse events (TRAE). The success rate of tumor ablation using IRE was 94.9% and was non-inferior to the RFA group (96.0%) (P = 0.761). For the secondary endpoints, the average ablation time was 34.29 ± 30.38 min for the IRE group, which was significantly longer than for the RFA group (19.91 ± 16.08 min) (P < 0.001). The incidences of postoperative complications after 1 week (P = 1.000), 1 month (P = 0.610) and 3 months (P = 0.490) were not significantly different between the 2 groups. The recurrence rates of liver tumor at 1, 3 and 6 months after ablation were 0 (0.0%), 10 (13.9%) and 10 (13.3%) in the IRE group and 2.9%, 7.3% and 19.7% in the RFA control group (all P > 0.05), respectively. For safety assessments, 51 patients experienced 191 AEs (65.4%) in the IRE group, which was not different from the RFA group (73.0%, 54/184) (P = 0.646). In 7 IRE patients, 8 TRAEs (7.9%) occurred, the most common being edema of the limbs (mild grade) and fever (severe grade), while no TRAEs occurred in the RFA group. This study proved that the excellent safety and efficacy of IRE was non-inferior to the regular radiofrequency device in ablation performance for the treatment of solid liver tumors. Clinical trial registration: Chinese Clinical Trial Registry: ChiCTR1800017516.

15.
Front Cardiovasc Med ; 9: 968014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312282

RESUMO

Background: Atrial fibrillation (AF) is the most frequent arrythmia managed in clinical practice. Several mechanisms have been proposed to contribute to the occurrence and persistence of AF, in which oxidative stress plays a non-negligible role. The endocannabinoid system (ECS) is involved in a variety physiological and pathological processes. Cannabinoid receptor 1 (CB1R) and cannabinoid receptor 2 (CB2R) are expressed in the heart, and studies have shown that activating CB2R has a protective effect on the myocardium. However, the role of CB2R in AF is unknown. Materials and methods: Angiotensin II (Ang II)-infused mice were treated with the CB2R agonist AM1241 intraperitoneally for 21 days. Atrial structural remodeling, AF inducibility, electrical transmission, oxidative stress and fibrosis were measured in mice. Results: The susceptibility to AF and the level of oxidative stress were increased significantly in Ang II-infused mice. In addition, nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), NOX4, and oxidized Ca2+/calmodulin-dependent protein kinase II (ox-CaMKII) were highly expressed. More importantly, treatment with AM1241 activated CB2R, resulting in a protective effect. Conclusion: The present study demonstrates that pharmacological activation of CB2R exerts a protective effect against AF via a potential NOX/CaMKII mechanism. CB2R is a potential therapeutic target for AF.

16.
Anal Chem ; 94(36): 12368-12373, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36045488

RESUMO

In this work, an antigen-down photoelectrochemical (PEC) immunosensor based on a signal polarity switching strategy for the detection of cytokeratin 19 fragment 21-1 (CYFRA21-1) was proposed. 3,4,9,10-Perylene tetracarboxylic acid (PTCA) is a conjugated organic dye containing five benzene nuclei, which has excellent film-forming and optical properties. PTCA sensitized by SnS2 can further improve the basal signal and the stability of the PEC immunosensor. Moreover, avidin-functionalized CuInS2 as a signal probe can convert the basal anodic photocurrent to a cathodic photocurrent. Therefore, the PEC sensor realized the photocurrent polarity conversion before and after labeling. With avidin-functionalized CuInS2, the polarity of the photocurrent was changed once CYFRA21-1 was detected. Therefore, the PEC immunosensor owns high sensitivity. The linear range of the immunosensor for the detection of CYFRA21-1 is 0.00001-500 ng·mL-1, and the detection limit is 3.5 fg·mL-1. The PEC immunosensor has good stability, high selectivity, and good repeatability. This work may provide a new way for the detection of CYFRA21-1 and other proteins.


Assuntos
Técnicas Biossensoriais , Antígenos de Neoplasias , Avidina , Técnicas Eletroquímicas , Imunoensaio , Queratina-19 , Limite de Detecção
17.
Mikrochim Acta ; 189(8): 303, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915284

RESUMO

A self-powered photoelectrochemical (PEC) aptasensor was constructed to sensitively detect 17ß-estradiol (E2). Firstly, a reasonable AgInS2@Co/Ni-UiO-66@Carbon Nanodots (CDs) photoelectrode with excellent photoelectrochemical performance was built by a simple two-step preparation method. The Co and Ni doping markedly improved the activity of UiO-66; the matched energy level of AgInS2 and Co/Ni-UiO-66 promoted the separation of electron-hole pairs, and the coupling of CDs further enhanced the conductivity and light utilization. Therefore, a steady anode-photocurrent signal output was obtained in 0.0 V bias voltage, providing a reliable photoelectric translating platform for assembling a self-powered PEC aptasensor. The E2-aptamer was adopted as a recognition unit to enhance the selectivity and sensitivity of the proposed aptasensor. The specific recognition reaction between E2 and aptamer administering to a raised photocurrent signal and the concentration of E2 was quantified by counting the fluctuation of the anode-photocurrent signal. The linear response range of the PEC aptasensor was 1.0 × 10-5-10 nmol/L, and the detection limit (S/N = 3) was lower than 3.0 fmol/L under optimal conditions. The fabricated aptasensor exhibited admirable selectivity, high sensitivity, rapid response, and wide linear range, demonstrating an extensive application prospect for environmental endocrine disruptor detection.


Assuntos
Aptâmeros de Nucleotídeos , Disruptores Endócrinos , Ácidos Ftálicos , Eletrodos , Disruptores Endócrinos/análise , Estruturas Metalorgânicas
18.
Front Oncol ; 12: 957138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033469

RESUMO

Objectives: To explore the efficacy and safety of local pleural anesthesia (LPA) for relieving pain during microwave ablation (MWA) of pulmonary nodules in the subpleural regions. Materials and Methods: From June 2019 to December 2021, 88 patients with 97 subpleural nodules underwent percutaneous CT-guided MWA. Patients were divided into two groups according to whether LPA was applied; 53 patients with local pleural anesthesia during MWA; and 35 patients with MWA without LPA. The differences in technical success, pre-and post- and intra-operative visual analog scale (VAS) pain scores, complications of the procedure, and local progression-free survival (LPFS) between the two groups were assessed. Thus, to evaluate the efficacy and safety of MWA combined with LPA for treating subpleural nodules. Results: In this study, the procedures in all patients of both groups achieved technical success according to pre-operative planning. There was no statistically significant difference in the pre-operative VAS pain scores between the two groups. Intra-operative VAS scores were significantly higher in the non-LPA (NLPA) group than in the LPA group. They remained significantly higher in the NLPA group than in the LPA group during the short postoperative period. Analgesics were used more in the NLPA group than in the LPA group intra- and postoperatively, with a statistically significant difference, especially during the MWA procedures. The overall LPFS rates were 100%, 98.333%, 98.333%, and 98.333% at 1, 3, 6, and 12 months postoperatively in the LPA group and 100%, 97.297%, 94.595%, and 94.595% postoperatively in the NLPA group, respectively. Tumor recurrence occurred in one and two patients with lung adenocarcinoma in the LPA and NLPA groups. The incidence of pneumothorax was significantly higher in the NLPA group (25,714%, 9/35) than in the LPA group (15.094%, 8/53), and there were three cases of pleural effusion (blood collection) and one case of pulmonary hemorrhage in the NLPA group. Conclusion: Percutaneous CT-guided MWA is a safe and effective treatment for subpleural pulmonary nodules. Applying a combined LPA technique can reduce the patient's pain and complications during and after the MWA. The long-term efficacy must be verified in more patients and a longer follow-up.

19.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166483, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798229

RESUMO

Excessive alcohol consumption has long been identified as a risk factor for adverse atrial remodeling and atrial fibrillation (AF). Icariin is a principal active component from traditional Chinese medicine Herba Epimedii and has been demonstrated to exert potential antiarrhythmic effect. The present study was designed to evaluate the effect of icariin against alcohol-induced atrial remodeling and disruption of mitochondrial dynamics and furthermore, to elucidate the underlying mechanisms. Excessive alcohol-treated C57BL/6 J mice were infected with serotype 9 adeno-associated virus (AAV9) carrying mouse SIRT3 gene or negative control virus. Meanwhile, icariin (50 mg/kg/d) was administered to the animals in the presence or absence of AAV9 carrying SIRT3 shRNA. We noted that 8 weeks of icariin treatment effectively attenuated alcohol consumption-induced atrial structural and electrical remodeling as evidenced by reduced AF inducibility and reversed atrial electrical conduction pattern as well as atrial enlargement. Furthermore, icariin-treated group exhibited significantly enhanced atrial SIRT3-AMPK signaling, decreased atrial mitoSOX fluorescence and mitochondrial fission markers, elevated mitochondrial fusion markers (MFN1, MFN2) as well as NRF-1-Tfam-mediated mitochondrial biogenesis. Importantly, these beneficial effects were mimicked by SIRT3 overexpression while abolished by SIRT3 knockdown. These data revealed that targeting atrial SIRT3-AMPK signaling and preserving mitochondrial dynamics might serve as the novel therapeutic strategy against alcohol-induced AF genesis. Additionally, icariin ameliorated atrial remodeling and mitochondrial dysfunction by activating SIRT3-AMPK signaling, highlighting the use of icariin as a promising antiarrhythmic agent in this circumstance.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Flavonoides , Sirtuína 3 , Proteínas Quinases Ativadas por AMP/genética , Consumo de Bebidas Alcoólicas/efeitos adversos , Animais , Fibrilação Atrial/induzido quimicamente , Fibrilação Atrial/tratamento farmacológico , Flavonoides/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 3/genética
20.
Food Funct ; 13(13): 7302-7319, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35726783

RESUMO

Polydatin has attracted much attention as a potential cardioprotective agent against ischemic heart disease and diabetic cardiomyopathy. However, the effect and mechanism of polydatin supplementation on alcoholic cardiomyopathy (ACM) are still unknown. This study aimed to determine the therapeutic effect of polydatin against ACM and to explore the molecular mechanisms with a focus on SIRT6-AMP-activated protein kinase (AMPK) signaling and mitochondrial function. The ACM model was established by feeding C57/BL6 mice with an ethanol Lieber-DeCarli diet for 12 weeks. The mice received polydatin (20 mg kg-1) or vehicle treatment. We showed that polydatin treatment not only improved cardiac function but also reduced myocardial fibrosis and dynamin-related protein 1 (Drp-1)-mediated mitochondrial fission, and enhanced PTEN-induced putative kinase 1 (PINK1)-Parkin-dependent mitophagy in alcohol-treated myocardium. Importantly, these beneficial effects were mimicked by SIRT6 overexpression but abolished by the infection of recombinant serotype 9 adeno-associated virus (AAV9) carrying SIRT6-specific small hairpin RNA. Mechanistically, alcohol consumption induced a gradual decrease in the myocardial SIRT6 level, while polydatin effectively activated SIRT6-AMPK signaling and modulated mitochondrial dynamics and mitophagy, thus reducing oxidative stress damage and preserving mitochondrial function. In summary, these data present new information regarding the therapeutic actions of polydatin, suggesting that the activation of SIRT6 signaling may represent a new approach for tackling ACM-related cardiac dysfunction.


Assuntos
Alcoolismo , Cardiomiopatia Alcoólica , Sirtuínas , Proteínas Quinases Ativadas por AMP/metabolismo , Consumo de Bebidas Alcoólicas , Animais , Cardiomiopatia Alcoólica/metabolismo , Etanol , Glucosídeos , Camundongos , Sirtuínas/genética , Sirtuínas/metabolismo , Estilbenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...