Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
Neural Regen Res ; 20(5): 1495-1504, 2025 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39075915

RESUMO

JOURNAL/nrgr/04.03/01300535-202505000-00031/figure1/v/2024-07-28T173839Z/r/image-tiff Distinct brain remodeling has been found after different nerve reconstruction strategies, including motor representation of the affected limb. However, differences among reconstruction strategies at the brain network level have not been elucidated. This study aimed to explore intra-network changes related to altered peripheral neural pathways after different nerve reconstruction surgeries, including nerve repair, end-to-end nerve transfer, and end-to-side nerve transfer. Sprague-Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight: no nerve repair, grafted nerve repair, phrenic nerve end-to-end transfer, and end-to-side transfer with a graft sutured to the anterior upper trunk. Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery. The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component. Alterations in intra-network resting-state functional connectivity were compared among the groups. Target muscle reinnervation was assessed by behavioral observation (elbow flexion) and electromyography. The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway. Nerve repair was related to enhanced connectivity within the sensorimotor network, while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation. The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer. Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer. Our study revealed important brain networks related to different nerve reconstructions. These networks may be potential targets for enhancing motor recovery.

2.
J Med Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258312

RESUMO

The FLT3-ITD (internal tandem duplication) mutant has been a promising target for acute myeloid leukemia (AML) drug discovery but is now facing the challenge of resistance due to point mutations. Herein, we have discovered a type II FLT3 inhibitor, SILA-123. This inhibitor has shown highly potent inhibitory effects against FLT3-WT (IC50 = 2.1 nM) and FLT3-ITD (IC50 = 1.0 nM), tumor cells with the FLT3-ITD mutant such as MOLM-13 (IC50 = 0.98 nM) and MV4-11 (IC50 = 0.19 nM), as well as BaF3 cells associated with the FLT3-ITD mutant and point mutations like BaF3-FLT3-ITD-G697R (IC50 = 3.0 nM). Moreover, SILA-123 exhibited promising kinome selectivity against 310 kinases (S score (10) = 0.06). In in vivo studies, SILA-123 significantly suppressed the tumor growth in MV4-11 (50 mg/kg/d, TGI = 87.3%) and BaF3-FLT3-ITD-G697R (50 mg/kg/d, TGI = 60.0%) cell-inoculated allograft models. Our data suggested that SILA-123 might be a promising drug candidate for FLT3-ITD-positive AML.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39289935

RESUMO

OBJECTIVE: This study aimed to investigate the protective effect and mechanism of Astragalus polysaccharide (APS) on autoimmune encephalomyelitis. METHODS: C57BL/6 mice were randomly divided into the blank control group, EAE group, and APS intervention group (n=15/group). The Experimental Autoimmune Encephalomyelitis (EAE) mouse model was established by active immunization. The pathological changes in the spinal cord were evaluated by Hematoxylin-eosin (HE) and Luxol Fast Blue (LFB) staining. The number of CD11b+ Gr-1+ myeloid-derived suppressor cells (MDSCs) in the spleen tissues of mice in each group was determined by immunofluorescence staining. The expression of Arginase-1 in the spinal cord and spleen of each group was detected by immunofluorescence double staining. The TNF-α, IL-6, and Arginase-1 levels in the spleen were detected by ELISA assay. A western blot was used to detect the protein expression of the AMPK/JAK/STAT3/Arginase-1 signaling pathway. RESULTS: After the intervention of APS, the incidence of autoimmune encephalomyelitis in mice of the APS group was significantly lower than that in the EAE group, and the intervention of APS could significantly delay the onset time in the EAE mice, and the score of neurological function deficit in mice was significantly lower than that in EAE group (P < 0.05). APS intervention could reduce myelin loss and improve the inflammatory response of EAE mice. Moreover, it could induce the expression of CD11b+ GR-1 + bone MDSCs in the spleen and increase the expression of Arginase-1 in the spinal cord and spleen. This study further demonstrated that APS can protect EAE mice by activating the AMPK/JAK/STAT3/Arginase-1 signaling pathway. CONCLUSION: After the intervention of APS, myelin loss and inflammatory response of EAE mice were effectively controlled. APS promoted the secretion of Arginase-1 by activating MDSCs and inhibited CD4+T cells by activating AMPK/JAK/STAT3/Arginase-1 signaling pathway, thus improving the clinical symptoms and disease progression of EAE mice.

5.
Nat Chem Biol ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300230

RESUMO

Clustered regularly interspaced short palindromic repeats-Cas13 effectors are used for RNA editing but the adeno-associated virus (AAV) packaging limitations because of their big sizes hinder their therapeutic application. Here we report the identification of the Cas13j family, with LepCas13j (529 aa) and ChiCas13j (424 aa) being the smallest and most highly efficient variants for RNA interference. The miniaturized Cas13j proteins enable the development of compact RNA base editors. Chi-RESCUE-S, by fusing dChiCas13j with hADAR2dd, demonstrates high efficiency and specificity in A-to-G and C-to-U conversions. Importantly, this system is compatible with single-AAV packaging without the need for protein sequence truncation. It successfully corrected pathogenic mutations, such as APOC3D65N and SCN9AR896Q, to the wild-type forms. In addition, we developed an optimized system, Chi-RESCUE-S-mini3, which pioneered efficient in vivo C-to-U RNA editing of PCSK9 in mice through single-AAV delivery, resulting in reduced total cholesterol levels. These results highlight the potential of Cas13j to treat human diseases.

6.
Microbiol Spectr ; : e0120824, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248477

RESUMO

Insect gut microbes play important roles in digestion, metabolism, development, and environmental adaptation. Parasitoid wasps are one of the most important biological control agents in pest control, while the gut microbial species compositions and the associated functions have been poorly investigated. Two endoparasitoid wasps, Cotesia vestalis and Diadromus collaris, parasitize the larval stage and pupal stage of the diamondback moth, Plutella xylostella, respectively. Using whole-genome shotgun metagenomic sequencing, we characterized the gut microbial composition, diversity, and potential functional roles associated with the two parasitoid wasp larvae. The results reveal that Proteobacteria and Firmicutes are the dominant phyla in the gut of C. vestalis and D. collaris larvae, with Rhizobium and Enterococcus being the dominant genera. The putative microbial functions associated with the two parasitoid wasps might play a virtual role in assisting in consuming the host's nutritional composition. The enriched CAZymes family genes are primarily involved in the degradation and synthesis of chitin. Despite the richness of microbial species and communities, the microbes species and the microbial community structure exhibit significant similarity between the two parasitoid wasps and between the parasitoid wasp and the host P. xylostella. Notably, the prevalence of the genus Enterococcus shared among them suggests a possible link of gut microbes between the host and their associated parasitoids. Our study offers insights into the gut microbe-based interactions between the host and parasitoid wasps for the first time, potentially paving the way for the development of an ecologically friendly biocontrol strategy against the pest P. xylostella.IMPORTANCEEndoparasitoid wasps spend the majority of their lifespan within their host and heavily rely on the host's nutrition for survival. There is limited understanding regarding the composition and physiological impacts of gut microbial communities in parasitoid wasps, particularly during the larval stage, which is directly linked to the host. Based on a thorough characterization of the gut microbe and comprehensive comparative analysis, we found the microbial species of the larval parasitoid wasp Cotesia vestalis and the pupal parasitoid wasp Diadromus collaris were similar, sharing 159 genera and 277 species, as were the microbial community structure. Certain of the dominant microbial strains of the two parasitoid wasps were similar to that of their host Plutella xylostella larvae, revealing host insect may affect the microbial community of the parasitoid wasps. The putative microbial functions associated with the parasitoid wasp larvae play an important role in dietary consumption.

7.
J Pharm Anal ; 14(7): 100947, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39149142

RESUMO

Cancer genomics has led to the discovery of numerous oncogenes and tumor suppressor genes that play critical roles in cancer development and progression. Oncogenes promote cell growth and proliferation, whereas tumor suppressor genes inhibit cell growth and division. The dysregulation of these genes can lead to the development of cancer. Recent studies have focused on non-coding RNAs (ncRNAs), including circular RNA (circRNA), long non-coding RNA (lncRNA), and microRNA (miRNA), as therapeutic targets for cancer. In this article, we discuss the oncogenes and tumor suppressor genes of ncRNAs associated with different types of cancer and their potential as therapeutic targets. Here, we highlight the mechanisms of action of these genes and their clinical applications in cancer treatment. Understanding the molecular mechanisms underlying cancer development and identifying specific therapeutic targets are essential steps towards the development of effective cancer treatments.

8.
Chem Soc Rev ; 53(17): 8546-8562, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39091219

RESUMO

Silicon-stereogenic chiral organosilanes have found increasing applications in synthetic chemistry, medicinal chemistry, and materials science. In this context, various asymmetric catalytic methods have been established for the diverse synthesis of silicon-stereogenic silanes. In particular, asymmetric organocatalysis is emerging as an important and complementary synthetic tool for the enantioselective construction of silicon-stereocenters, along with the rapid development of chiral-metal catalyzed protocols. Its advent provides a powerful platform to achieve functionalized silicon-stereogenic organosilanes with structural diversity, and should lead to great development in chiral organosilicon chemistry. In this Tutorial Review, we highlight these latest achievements from two aspects: desymmetrizations of prochiral tetraorganosilanes and dynamic kinetic asymmetric transformations of racemic organosilanes by employing five organocatalytic activation modes. The advantages, limitations and synthetic value of each protocol, as well as the synthetic opportunities still open for further exploration, are also discussed.

9.
J Am Chem Soc ; 146(36): 25028-25034, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213504

RESUMO

Controlling the packing of olefinic molecules in crystals is essential for triggering solid-state [2 + 2] photocycloaddition reactions and the synthesis of photocontrolled smart materials. Herein, we report the stepwise photodimerization-triggered photopolymerization of two triene coordination polymers (CPs), {[Zn(2-BBA)2(tpeb)]·0.5CH3CN}n (1, 2-HBBA = 2-bromobenzoic acid, tpeb = 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene) and {[Zn(3-BBA)2(tpeb)]·CH3CN)}n (2, 3-HBBA = 3-bromobenzoic acid). Upon irradiation with 420 nm light, each pair of closely packed and parallel olefinic bonds in 1 undergoes a [2 + 2] cycloaddition reaction, which connects two adjacent Z-shaped chains into a ladder-like coordination chain [Zn(2-BBA)2(bpbdpvpcb)0.5]n (1a, bpbdpvpcb = 1,3-bis(4-pyridyl)-2,4-bis(3,5-di(2-(4-pyridyl)vinyl)phenyl]cyclobutene) through single-crystal to single-crystal (SCSC) transformation. After photodimerization from 1 to 1a has occurred, the olefinic bonds that were initially distant are brought in close enough proximity to meet the requirements for a subsequent [2 + 2] cycloaddition reaction. Upon further light irradiation, the neighboring bpbdpvpcb ligands in 1a experience a SCSC photopolymerization based on [2 + 2] photocycloaddition and transform into poly-3b,4,5,5a,8b,9,10a-octahydro-4,5,9,10-tetrapyridyl-2,7-di(2-(4-pyridyl)vinyl)dicyclobuta[e,l]-pyren (poly-otpdpvdcbp). 2 showed similar structural changes under UV light illumination. Under light exposure, single crystals of 1 and 2 with different morphologies exhibit bending, cracking, and jumping photomechanical motions. The composite film (1-PVA) engineered by dispersing crystalline particles of 1 in poly(vinyl alcohol) (PVA) displays interesting light-wavelength-dependent photomechanical motions and can perform photodriven swimming on a liquid surface. This work provides a useful and promising approach to enable photodimerization of those photoinactive olefin pairs embedded in CPs and opens a new route to synthesize organic polymers by using olefinic CP platforms.

10.
Chem Commun (Camb) ; 60(73): 10005-10008, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39176439

RESUMO

An AND logic gate-based Hg2+ ion colorimetric assay was constructed using the plasmonic and nanozyme dual signal channels of gold nanoparticles (AuNPs). This assay increased the judgment criteria for the identification of Hg2+ ions and effectively improved the accuracy of Hg2+ ion detection.

11.
Drug Resist Updat ; 76: 101115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002266

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Recombinação Homóloga , Macrófagos , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Microambiente Tumoral/imunologia
12.
BMC Infect Dis ; 24(1): 691, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992583

RESUMO

BACKGROUND: Hemorrhagic varicella (HV) is a particular form of chicken pox.,with high mortality in adults. This form of the disease is rare, to date, approximately 4 cases have been reported. Occasional cases of HV have been documented in adults with hematologic disorders or other diseases. While there is one reported case of simultaneous reactivation of cytomegalovirus in an adult with chickenpox, there is a lack of information regarding changes in liver function indicators for such patients. This is unfortunate, as CMV reactivation can further exacerbate liver failure and increase mortality. In this report, we present a case of hemorrhagic varicella reactivation with cytomegalovirus and provide some relevant discussions. CASE PRESENTATION: We present the case of a 25-year-old male with HV, who had a history of nephrotic syndrome generally controlled with orally administered prednisone at a dosage of 50 mg per day for two months. The patient arrived at the emergency room with complaints of abdominal pain and the presence of hemorrhagic vesicles on his body for the past 3 days. Despite medical evaluation, a clear diagnosis was not immediately determined. Upon admission, the leukocyte count was recorded as 20.96 × 109/L on the first day, leading to the initiation of broad-spectrum antibiotic treatment. Despite the general interpretation that a positive IgG and a negative IgM indicate a previous infection, the patient's extraordinarily elevated IgG levels, coupled with a markedly increased CMV DNA quantification, prompted us to suspect a reactivation of the CMV virus. In light of these findings, we opted for the intravenous administration of ganciclovir as part of the treatment strategy. Unfortunately,,the patient succumbed to rapidly worsening symptoms and passed away. Within one week of the patient's demise, chickenpox gradually developed in the medical staff who had been in contact with him. In such instances, we speculate that the patient's diagnosis should be classified as a rare case of hemorrhagic varicella. CONCLUSION: Swift identification and timely administration of suitable treatment for adult HV are imperative to enhance prognosis.


Assuntos
Varicela , Coinfecção , Infecções por Citomegalovirus , Citomegalovirus , Humanos , Masculino , Adulto , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/diagnóstico , Citomegalovirus/isolamento & purificação , Varicela/tratamento farmacológico , Varicela/complicações , Varicela/virologia , Varicela/diagnóstico , Coinfecção/virologia , Coinfecção/tratamento farmacológico , Antivirais/uso terapêutico , Antivirais/administração & dosagem , Hemorragia/virologia , Hemorragia/etiologia , Herpesvirus Humano 3/isolamento & purificação , Ativação Viral
13.
Huan Jing Ke Xue ; 45(7): 3808-3814, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022929

RESUMO

Based on the ozone (O3) monitoring data of the Pearl River Delta (PRD) from 2015 to 2022 and the reanalysis of meteorological data, the impact of meteorological conditions on the annual variation and trends of the maximum daily 8-hour average O3 concentration (MDA8-O3) were quantified using multiple linear regression (MLR) and LMG methods. The results indicated that the MLR model constructed using meteorological parameters from individual months in autumn better simulated the variation in MDA8-O3 compared to that in the model built using meteorological parameters from the entire autumn season. The combined influence of total cloud cover, relative humidity, 2 m maximum temperature, and 850 hPa zonal wind led to a reduction of 34.1 µg·m-3 in MAD8-O3 in 2020 compared to that in 2019, with contributions of 31.3%, 45.2%, 15.8%, and 6.7%, respectively. The observed trends of MDA8-O3 in the PRD for September, October, November, and the autumn season during 2015-2022 were 7.3, 5.2, 4.8, and 5.8 µg·ï¼ˆm3·a)-1, respectively. Among these, the trends driven by meteorological factors were 3.6, 2.4, 2.4, and 3.1 µg·ï¼ˆm3·a)-1. Overall, meteorological conditions contributed 53.4% to the variations in autumn MDA8-O3 in the PRD from 2015 to 2022.

14.
J Integr Plant Biol ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967265

RESUMO

Soil salinity is a worldwide problem threatening crop yields. Some plant growth-promoting rhizobacteria (PGPR) could survive in high salt environment and assist plant adaptation to stress. Nevertheless, the genomic and metabolic features, as well as the regulatory mechanisms promoting salt tolerance in plants by these bacteria remain largely unknown. In the current work, a novel halotolerant PGPR strain, namely, Bacillus sp. strain RA can enhance tomato tolerance to salt stress. Comparative genomic analysis of strain RA with its closely related species indicated a high level of evolutionary plasticity exhibited by strain-specific genes and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to salt-affected soils. The transcriptome further showed that strain RA could tolerate salt stress by balancing energy metabolism via the reprogramming of biosynthetic pathways. Plants exude a plethora of metabolites that can strongly influence plant fitness. The accumulation of myo-inositol in leaves under salt stress was observed, leading to the promotion of plant growth triggered by Bacillus sp. strain RA. Importantly, myo-inositol serves as a selective force in the assembly of the phyllosphere microbiome and the recruitment of plant-beneficial species. It promotes destabilizing properties in phyllosphere bacterial co-occurrence networks, but not in fungal networks. Furthermore, interdomain interactions between bacteria and fungi were strengthened by myo-inositol in response to salt stress. This work highlights the genetic adaptation of RA to salt-affected soils and its ability to impact phyllosphere microorganisms through the adjustment of myo-inositol metabolites, thereby imparting enduring resistance against salt stress in tomato.

15.
Signal Transduct Target Ther ; 9(1): 142, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825657

RESUMO

Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.


Assuntos
Inibidores de Checkpoint Imunológico , Compostos Radiofarmacêuticos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Endopeptidases/genética , Gelatinases/genética , Gelatinases/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Lutécio/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Células NIH 3T3 , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Aging ; 4(8): 1076-1088, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834883

RESUMO

Oxidative phosphorylation, essential for energy metabolism and linked to the regulation of longevity, involves mitochondrial and nuclear genes. The functions of these genes and their evolutionary rate covariation (ERC) have been extensively studied, but little is known about whether other nuclear genes not targeted to mitochondria evolutionarily and functionally interact with mitochondrial genes. Here we systematically examined the ERC of mitochondrial and nuclear benchmarking universal single-copy ortholog (BUSCO) genes from 472 insects, identifying 75 non-mitochondria-targeted nuclear genes. We found that the uncharacterized gene CG11837-a putative ortholog of human DIMT1-regulates insect lifespan, as its knockdown reduces median lifespan in five diverse insect species and Caenorhabditis elegans, whereas its overexpression extends median lifespans in fruit flies and C. elegans and enhances oxidative phosphorylation gene activity. Additionally, DIMT1 overexpression protects human cells from cellular senescence. Together, these data provide insights into the ERC of mito-nuclear genes and suggest that CG11837 may regulate longevity across animals.


Assuntos
Caenorhabditis elegans , Evolução Molecular , Longevidade , Animais , Longevidade/genética , Humanos , Caenorhabditis elegans/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Fosforilação Oxidativa , Insetos/genética , Genoma de Inseto/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Senescência Celular/genética
17.
Discov Oncol ; 15(1): 221, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861194

RESUMO

Acute myeloid leukemia (AML) remains challenging due to chemotherapeutic drug-resistance (CDR). Aberrant expression B7 family proteins are involved in tumors evasion. We wonder whether B7 family protein alteration in AML CDR further supports tumor escape. Here, we establish AML cytarabine-resistant cell line U937/Ara-C and report on the expression MHC molecule and B7 family member. HLA-ABC was highly expressed similarly on both cell lines. MIC (MHC class I chain related) A/B and B7-H6 was moderately expressed on the surface of U937 and decreased dramatically by U937/Ara-C. In contrast, enhanced expression of B7-H1 and B7-H7 by U937/Ara-C was observed. HLA-DR and other B7 family members including CD80, CD86, B7-DC, B7-H2, B7-H3, B7-H4, and B7-H5 were not detected by both cell lines. Compared co-cultured with U937, peripheral blood mononuclear cells showed a decreased cytotoxicity when incubated with U937/Ara-C, as indicated by decreased levels of granzyme B and perforin production, accompanied with less TNF-α and lactate dehydrogenase secretion. In conclusion, AML CDR further evades the anti-tumor immune response which may through MHC molecule and B7 family members.

18.
Br J Pharmacol ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38881036

RESUMO

BACKGROUND AND PURPOSE: Ulcerative colitis (UC) is a refractory inflammatory disease associated with immune dysregulation. Elevated levels of heat shock protein (HSP) 90 in the ß but not α subtype were positively associated with disease status in UC patients. This study validated the possibility that pharmacological inhibition or reduction of HSP90ß would alleviate colitis, induced by dextran sulfate sodium, in mice and elucidated its mechanisms. EXPERIMENTAL APPROACH: Histopathological and biochemical analysis assessed disease severity, and bioinformatics and correlation analysis explained the association between the many immune cells and HSP90ß. Flow cytometry was used to analyse the homeostasis and transdifferentiation of Th17 and Treg cells. In vitro inhibition and adoptive transfer assays were used to investigate functions of the phenotypically transformed Th17 cells. Metabolomic analysis, DNA methylation detection and chromatin immunoprecipitation were used to explore these mechanisms. KEY RESULTS: The selective pharmacological inhibitor (HSP90ßi) and shHSP90ß significantly mitigated UC in mice and promoted transformation of Th17 to Treg cell phenotype, via Foxp3 transcription. The phenotypically-transformed Th17 cells by HSP90ßi or shHSP90ß were able to inhibit lymphocyte proliferation and colitis in mice. HSP90ßi and shHSP90ß selectively weakened glycolysis by stopping the direct association of HSP90ß and GLUT1, the key glucose transporter, to accelerate ubiquitination degradation of GLUT1, and enhance the methylation of Foxp3 CNS2 region. Then, the mediator path was identified as the "lactate-STAT5-TET2" cascade. CONCLUSION AND IMPLICATIONS: HSP90ß shapes the fate of Th17 cells via glycolysis-controlled methylation modification to affect UC progression, which provides a new therapeutic target for UC.

19.
bioRxiv ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38915504

RESUMO

Although grid cells are one of the most well studied functional classes of neurons in the mammalian brain, the assumption that there is a single grid orientation and spacing per grid module has not been carefully tested. We investigate and analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the ability of encoding local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that variability, of a similar magnitude to the analyzed data, leads to significantly decreased decoding error, even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

20.
Syst Biol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940001

RESUMO

Maximum likelihood (ML) phylogenetic inference is widely used in phylogenomics. As heuristic searches most likely find suboptimal trees, it is recommended to conduct multiple (e.g., ten) tree searches in phylogenetic analyses. However, beyond its positive role, how and to what extent multiple tree searches aid ML phylogenetic inference remains poorly explored. Here, we found that a random starting tree was not as effective as the BioNJ and parsimony starting trees in inferring ML gene tree and that RAxML-NG and PhyML were less sensitive to different starting trees than IQ-TREE. We then examined the effect of the number of tree searches on ML tree inference with IQ-TREE and RAxML-NG, by running 100 tree searches on 19,414 gene alignments from 15 animal, plant, and fungal phylogenomic datasets. We found that the number of tree searches substantially impacted the recovery of the best-of-100 ML gene tree topology among 100 searches for a given ML program. In addition, all of the concatenation-based trees were topologically identical if the number of tree searches was ≥ 10. Quartet-based ASTRAL trees inferred from 1 to 80 tree searches differed topologically from those inferred from 100 tree searches for 6 /15 phylogenomic datasets. Lastly, our simulations showed that gene alignments with lower difficulty scores had a higher chance of finding the best-of-100 gene tree topology and were more likely to yield the correct trees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA