Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 259: 115062, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37229874

RESUMO

Aluminium (Al) is a common environmental neurotoxin, but the molecular mechanism underlying its toxic effects remains unclear. Many studies have shown that aluminium exposure leads to increased neuronal apoptosis. This study aimed to investigate the mechanisms and signalling pathways involved in aluminium exposure-induced neuronal apoptosis. The results showed a decrease in the number of PC12 cells and changes in cell morphology in the aluminium maltol exposure group. The viability of PC12 cells decreased gradually with increasing of exposure doses, and the apoptosis rate increased. The expression of Lnc001209 decreased gradually with an increase in the aluminium exposure dose. After transfection of Lnc001209 siRNA in aluminium-exposed PC12 cells, the protein expression levels of p-Akt Ser473, p-Akt Thr308, p-P85 Tyr467, p-mTOR Ser2448 and CD36 were increased. RNA pull-down MS showed that Lnc001209 interacts with the CD36 protein. Expression of the CD36 protein was increased in PC12 cells exposed to aluminium. The results of the CD36 intervention experiment showed that the protein expression levels of p-Akt Ser473, p-Akt Thr308, p-P85 Tyr467, and p-mTOR Ser2448 likely increased after CD36 overexpression. In addition, the phosphorylation level of AKT had the most significant increase. The enhancement of p-Akt activity promotes neuronal apoptosis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Antígenos CD36 , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose
2.
Neurotox Res ; 40(6): 1963-1978, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36459375

RESUMO

Aluminium (Al) is an environmental neurotoxin that humans are widely exposed to, but the molecular mechanism of its toxic effects is not fully understood. Many studies have shown that exposure to Al can cause abnormal phosphorylation of the tau protein that is believed as one of pathological features of Alzheimer's disease. Increasing evidence indicates that microRNAs (miRNAs) may be involved in the pathological processes of neurodegenerative diseases and are potential regulatory factors for related target genes. Phosphorylation at Ser-133 of cAMP response element-binding protein (CREB) is one of the major pathways of CREB activation, and phosphorylation at this site is controlled by protein kinase A (PKA). The catalytic subunit of PKA, cAMP-dependent protein kinase catalytic subunit beta (PRKACB), phosphorylates CREB. The target gene prediction software TargetScan showed that PRKACB was one of the target mRNAs of miR-200a-3p. The purpose of this study was to investigate whether miR-200a-3p regulates the PKA/CREB pathway by targeting PRKACB and leads to abnormal phosphorylation of the tau protein in nerve cells. The results showed that Al exposure increased the expression level of miR-200a-3p, and miR-200a-3p increased the expression of targeted downregulated PRKACB, and then decreased the PKA/CREB signalling pathway activity, leading to abnormal hyperphosphorylation of tau.


Assuntos
Alumínio , MicroRNAs , Ratos , Animais , Humanos , Células PC12 , Fosforilação , Alumínio/toxicidade , Proteínas tau/genética , Proteínas tau/metabolismo , Proteínas Quinases/metabolismo , Domínio Catalítico , MicroRNAs/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo
3.
ACS Chem Neurosci ; 12(17): 3250-3265, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415727

RESUMO

Aluminum is an environmental neurotoxin that comes extensively in contact with human beings. Animal and human studies demonstrated that aluminum exposure increases the deposition of beta amyloid proteins in the brain as it was observed in Alzheimer's disease. The purpose of this study was to investigate whether miR-29a/b1 affected the expression of beta-secrete enzymes (BACE1) in the process of amyloid ß-protein (Aß) deposition caused by aluminum exposure. The study was performed using two different cell lines. Our results showed that after rat primary cortical neurons were exposed to aluminum, BACE1 gene and protein levels increased to different degrees, and the expression level of Aß1-42 increased. In aluminum-exposed groups, the expression of miR-29a and miR-29b1 decreased, while the expression of amyloid protein Aß1-42 and BACE1 increased. In miRs transfection groups, the expression of amyloid protein Aß1-42 and BACE1 decreased. Aluminum may affect the expression of BACE1 by lowering miR-29a and miR-29b1. AEK293 cells were utilized in this research since they present elevated levels of miR-29a and miR-29b1. After HEK293 cells were exposed to aluminum alone, BACE1 mRNA and BACE1 protein expression levels increased with the increase of aluminum exposure dose (p < 0.05), and the level of Aß1-42 also increased (p < 0.05). Compared with the group exposed to aluminum alone at the same doses, the expression levels of BACE1 mRNA and BACE1 protein in the miRs transfected plus aluminum-exposed groups significantly decreased (p < 0.05), and the level of Aß1-42 also decreased (p < 0.05). This result is consistent with the investigation in rat primary neurons. The results of two types of cells showed that aluminum may cause abnormal down-regulation of the expressions of miR-29a and miR-29b1, thus negatively regulating the increase of BACE1 expression and finally leading to the increase of Aß.


Assuntos
Doença de Alzheimer , MicroRNAs , Alumínio/toxicidade , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides , Animais , Ácido Aspártico Endopeptidases/genética , Células HEK293 , Humanos , MicroRNAs/genética , Ratos
4.
Environ Toxicol Pharmacol ; 78: 103406, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32438325

RESUMO

The main symptoms of Alzheimer's disease (AD) is the loss of learning and memory ability, of which biological basis is synaptic plasticity. Aluminium has been found to cause changes in synaptic plasticity, but its molecular mechanism was unclear. In this study, Sprague-Dawley rats were injected with aluminium maltol (Al(mal)3) through the lateral ventricle to establish an AD-like model. Y-maze, electrophysiological measurements, Golgi staining, scanning electron microscopy, quantitative real-time polymerase chain reaction, and western blot techniques were used to investigate regulation of the metabolic glutamate receptor 1 (mGluR1) in synaptic plasticity impairment induced by Al(mal)3. The results showed that Al(mal)3 inhibited the induction and maintenance of long-term potentiation in the hippocampal CA1 region. During this process, the expression of mGluR1 was up-regulated and it inhibited the expression and phosphorylation of the N-methyl-D-aspartic acid receptors (NMDARs). This mainly affected NMDAR1 and NMDAR2B but did not affect protein kinase C expression.


Assuntos
Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Pironas/toxicidade , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
5.
J Trace Elem Med Biol ; 61: 126551, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32470791

RESUMO

BACKGROUND: Aluminium is an environmental neurotoxin to which human beings are extensively exposed. However, the molecular mechanism of aluminium toxicity remains unclear. METHODS: The changes in cognitive function of aluminum exposed workers under long-term occupational exposure were evaluated, and the relationship between cognitive changes, plasma memory related BDNF and EGR1 protein expression, and variations of epigenetic markers H3K4me3, H3K9me2, H3K27me3 expression levels in blood was explored. RESULTS: MMSE, DSFT, DST scores in cognitive function and the levels of plasma BDNF and EGR1 protein expression decreased with the increase of blood aluminum level. H3K4me3, H3K9me2, H3K27me3 expression levels in peripheral blood lymphocytes of aluminum exposed workers were statistically different (all P<0.05). H3K4me3, H3K9me2 and H3K27me3 expression levels in lymphocytes were correlated with blood aluminum level. BDNF, EGR1 protein level and H3K4me3, H3K9me2, H3K27me3 expression levels have different degrees of correlation. There was a linear regression relationship between plasma BDNF, H3K4me3 and H3K9me2. H3K9me2 had a greater effect on BDNF than H3K4me3. There is a linear regression relationship between EGR1, H3K4me3 and H3K27me3, and the influence of H3K4me3 on EGR1 is greater than that of H3K27me3 on EGR1. CONCLUSION: Alummnum may regulate the expression of BDNF and EGR1 by regulating H3K4me3, H3K27me3 and H3K9me2, and affect the cognitive function of workers by affecting the expression of BDNF and EGR1.

6.
Neurotox Res ; 37(4): 996-1008, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970651

RESUMO

Aluminum (Al) is an environmental neurotoxin with extensive exposure by humans, but the molecular mechanism of its toxicity is still unclear. Several studies have indicated that exposure to aluminum can impair learning and memory function. The purpose of this study was to investigate the mechanism of LTP injury and the effect of aluminum exposure on related signal pathways. The results showed that the axonal dendrites of neurons in the hippocampal CA1 area of rats exposed to maltol aluminum showed neuritic beading and the dendritic spines were reduced. This resulted in dose-dependent LTP inhibition and led to impaired learning and memory function in rats. The PI3K-Akt-mTOR pathway may play a crucial role in this process.


Assuntos
Alumínio/toxicidade , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
7.
Chemosphere ; 244: 125445, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31835052

RESUMO

Aluminium is an environmental neurotoxin that comes extensively in contact with human being. The molecular mechanism of aluminium toxicity remains unclear. A number of studies have indicated that exposure to aluminium can impair learning and memory function. The purpose of this study was to investigate the mechanism of long-term potentiation(LTP) injury and the related signalling pathway activated by aluminium exposure. The results showed that aluminium treatment produced dose-dependent inhibition of LTP and reduced the activity of Histone H3K9 demethylation (H3K9me2) demethylase and the expression of the PHD (plant homeodomain) finger protein 8 (PHF8). Interestingly, there was no statistically significant difference in the expression of the PHF8 gene, suggesting that aluminium exposure only affects the translation process. Decrease in brain-derived neurotrophic factor (BDNF) expression may be related to the effect of aluminium. With correlation analysis between the hippocampal standardised field excitatory postsynaptic potential (fEPSP) amplitude and the expression of various proteins in the aluminium-exposed rat, the hippocampal standardised fEPSP amplitude was positively correlated with the expression of hippocampal PHF8 and BDNF proteins, and negatively correlated with the expression of hippocampal H3K9me2 protein. The correlation between H3K9me2 and BDNF was also considered negative. The results suggest that changes in synaptic plasticity might be related to changes in these proteins, which were induced by aluminium exposure. In conclusion, chronic aluminium exposure may inhibit PHF8 and prevent it from functioning as a demethylase. This may block H3K9me2 demethylation, decrease BDNF protein expression, and lead to LTP impairment.


Assuntos
Alumínio/toxicidade , Substâncias Perigosas/toxicidade , Plasticidade Neuronal/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Histona Desmetilases , Humanos , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Memória/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...