Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 68(3): 280-294, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266254

RESUMO

INTRODUCTION: Epoxy-based resin formulations are a frequent cause of allergic and irritant contact dermatitis in the construction and painting industries. Cases of epoxy resin contact dermatitis continue to persist across many sectors and are likely attributable to the growing use of epoxy products, including epoxy-based anti-corrosion coatings and inadequate skin protection. There are no published performance data against epoxy resins for garment materials and gloves to guide proper material selection in the workplace. OBJECTIVES: The objective of this study was to evaluate the resistance of 5 protective garment materials against permeation and penetration by bisphenol A diglycidyl ether and its higher oligomers found commonly in epoxy-based anti-corrosion coatings. METHODS: Five disposable garment materials were evaluated for resistance to bisphenol A diglycidyl ether monomers and oligomers during contact with epoxy-based anti-corrosion coatings, including latex gloves, nitrile gloves, Tyvek coveralls, polypropylene/polyethylene (PP/PE) coveralls, and a cotton T-shirt. A permeation test cell system was used to evaluate each garment material against an epoxy-based zinc-rich primer and an epoxy-based intermediate coating using a realistic application method. Glass fiber filters were used to collect permeating and penetrating epoxy resin during a 120-min test period. Bisphenol A diglycidyl ether quantification was performed with high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Paint loading, coating thickness, and homogeneity were assessed on polytetrafluoroethylene filters sprayed in series in permeation test cells. RESULTS: Latex gloves provided the least resistance to permeation by BADGE in coating formulations, with a maximum cumulative permeation over the 2-h test interval of 21.7 ng cm-2 with the primer and 513.8 ng cm-2 with the intermediate coating product. Nitrile gloves were not permeated by either coating formulation. The Tyvek coveralls provided greater protection as compared to the PP/PE coveralls. The cotton T-shirt was penetrated by bisphenol A diglycidyl ether more frequently than any of the tested garment materials and resulted in a maximum cumulative penetration of 128 ng cm-2 with the primer and 28.0 ng cm-2 with the intermediate coating. CONCLUSION: Although all the garment materials evaluated during this study provided sufficient protection to prevent cumulative permeation in excess of the established acceptable permeation thresholds, the use of nitrile gloves and Tyvek coverall is highly recommended to minimize skin exposure to bisphenol A diglycidyl ether. We recommend cotton T-shirts to be used under Tyvek coveralls as a secondary layer of skin protection and for added comfort, but not as a primary protection layer.


Assuntos
Compostos Benzidrílicos , Dermatite de Contato , Compostos de Epóxi , Exposição Ocupacional , Humanos , Resinas Epóxi , Látex , Exposição Ocupacional/análise , Roupa de Proteção , Nitrilas
2.
Environ Int ; 156: 106632, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34020298

RESUMO

Epoxy resin systems based on Bisphenol A Diglycidyl Ether (BADGE) monomer and its higher oligomers are important commercial formulations used widely in construction for protective coating of steel structures, such as bridges. The literature on occupational exposures and biomonitoring of BADGE-based epoxies among construction painters is remarkably limited. In this first occupational biomonitoring study of epoxies, 44 construction painters performing mid- and top-coating were recruited from 12 metal structure coating sites in New England. Cross-shift changes in the urinary levels of total BADGE and its three major hydrolysis derivatives - BADGE·2H2O, BADGE·H2O, BADGE·HCl·H2O - were assessed. Results for 81 urine samples collected from coating workers were compared with 28 urine samples of a reference group of 14 spray polyurethane foam (SPF) insulation workers. The highest concentrations of all biomarkers were found in the urine samples of mid-coat applicators. The major urinary biomarker of BADGE in this cohort of workers, BADGE·2H2O, was detected in 100% of urine samples. The post-shift BADGE·2H2O (specific gravity normalized data) in mid-coat applicators had a geometric mean (GM) of 1.46 ng/mL and a geometric standard deviation (GSD) of 3.6 (range, 0.2-18.7 ng/mL). The second most abundant biomarker in urine, BADGE·HCl·H2O, was measured in 84% of samples, and had a post-shift GM(GSD) of 0.17 (2.3) ng/mL (range, <0.025-0.59 ng/mL). BADGE·2H2O was 8.6 times more abundant than BADGE·HCl·H2O. BADGE·H2O was quantified only in 10% of the samples (range, 0.11-0.41 ng/mL). Free BADGE in post-shift urine, corrected for background, had GM (GSD) of 0.04 (2.5) ng/mL (range, <0.025-0.16 ng/mL). Urinary BADGE·2H2O were significantly higher (p = 0.01) in mid-coat applicators compared to top-coat and SPF workers. Post-shift urinary BADGE·2H2O in mid-coat applicators increased by ~2.9× (p = 0.02) and 1.36× in top-coat applicators (p = 0.18) compared to pre-shift values, but not in SPF workers (0.95×; p = 0.40). In conclusion, we demonstrate that (i) significant BADGE uptake occurs via inhalation and skin exposures during application of epoxy-containing paintings (mid-coat), suggesting the need for improvements in hygiene practices and personal protective measures; (ii) BADGE·2H2O is a robust and sensitive biomarker for biomonitoring of exposures to BADGE-based epoxies in occupational settings; and (iii) widespread occurrence of BADGE and BADGE·2H2O in the urine of all workers, including SPF workers, suggest common exposures from non-occupational sources, such as ingestion or do-it-yourself consumer applications of epoxy resins. In light of this observation, establishing a reliable biological monitoring guidance value (BMGV) for BADGE·2H2O will require more background biomonitoring and health effect data. An initial reference value for BADGE·2H2O of 0.5 ng/mL (SG-normalized) or 180 nmol/mol creatinine is being proposed as the threshold to discriminate occupational from non-occupational exposures based on the maximum values observed in the reference SPF group.


Assuntos
Resinas Epóxi , Exposição Ocupacional , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/toxicidade , Monitoramento Biológico , Compostos de Epóxi , Humanos , Exposição Ocupacional/análise
3.
Ann Work Expo Health ; 65(5): 539-553, 2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-33734284

RESUMO

Epoxy resins are extremely versatile products that are widely used in construction for coatings, adhesives, primers, and sealers. Occupational exposures to epoxies cause allergic contact dermatitis, occupational asthma, hypersensitivity pneumonitis (epoxy-resin lung) and acute decline in lung function. Despite these health concerns, there is a striking paucity of quantitative exposure data to epoxy resins in construction. The lack of practical analytical methods and suitable personal samplers for monitoring of reactive two-component epoxide systems in real-world applications has been an unmet challenge for decades. Sampling and analysis methods for epoxies should be able to collect the paint aerosols efficiently, stop polymerization reactions at the time of sample collection, and subsequently provide detailed multispecies characterization of epoxides, as well as the total epoxide group (TEG) content of a sample, to properly document the chemical composition of exposures to epoxide paints. In this work, we present the development and application of two new complementary quantitative analytical methods-liquid chromatography-tandem mass spectrometry with online ultraviolet detection and ion chromatography (IC)-for multispecies characterization of raw products, as well as inhalation and skin exposures to epoxy formulations in real-world construction applications. A novel personal sampler, CIP-10MI, was used for personal sampling of airborne epoxies. We report for the first time the results of personal inhalation and potential skin exposures to individual monomers and oligomers of bisphenol A diglycidyl ether (BADGE), as well as TEG, during metal structure coatings in construction; compare analytical results of the two analytical methods; and provide recommendations for method selection in future field studies. High inhalation and potential skin exposures to epoxies point to the need for interventions to reduce exposures among painters in construction.


Assuntos
Resinas Epóxi , Exposição Ocupacional , Cromatografia Líquida , Humanos , Pintura , Espectrometria de Massas em Tandem
4.
Int J Hyg Environ Health ; 226: 113495, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32120250

RESUMO

BACKGROUND: Isocyanates are highly reactive chemicals used widely in metal structure coating applications in construction. Isocyanates are potent respiratory and skin sensitizers and a leading cause of occupational asthma. At present, there is no cure for isocyanate asthma and no biomarkers of early disease. Exposure reduction is considered the most effective preventive strategy. To date, limited data are available on isocyanate exposures and work practices in construction trades using isocyanates, including metal structure coatings. OBJECTIVES: The primary objectives of this work were: i) to characterize isocyanate inhalation and dermal exposures among painters during metal structure coating tasks in construction; and ii) to assess the adequacy of existing work practices and exposure controls via urinary biomonitoring pre- and post-shift. METHODS: Exposures to aliphatic isocyanates based on 1,6-hexamethylene diisocyanate (1,6-HDI) and its higher oligomers (biuret, isocyanurate and uretdione) were measured among 30 workers performing painting of bridges and other metal structures in several construction sites in the Northeastern USA. Exposure assessment included simultaneous measurement of personal inhalation exposures (n = 20), dermal exposures (n = 22) and body burden via urinary biomonitoring pre- and post-shift (n = 53). Contextual information was collected about tasks, processes, materials, work practices, personal protective equipment (PPEs) and exposure controls, work histories, and environmental conditions. RESULTS: Breathing zone concentrations were the highest for biuret (median, 18.4 µg/m3), followed by 1,6-HDI monomer (median, 3.5 µg/m3), isocyanurate (median, 3.4 µg/m3) and uretdione (median, 1.7 µg/m3). The highest exposures, measured during painting inside an enclosed bridge on a hot summer day, were: 10,288 µg/m3 uretdione; 8,240 µg/m3 biuret; and 947 µg/m3 1,6-HDI. Twenty percent of samples were above the NIOSH ceiling exposure limit for 1,6- HDI (140 µg/m3) and 35% of samples were above the UK-HSE ceiling for total isocyanate group (70 µg NCO/m3). Isocyanate loading on the gloves was generally high, with a median of 129 µg biuret/pair and maximum of 60.8 mg biuret/pair. The most frequently used PPEs in the workplace were half-face organic vapor cartridge (OVC) respirators, disposable palmar dip-coated polymer gloves, and cotton coveralls. However, 32% of workers didn't wear any respirator, 47% wore standard clothing with short-sleeve shirts and 14% didn't wear any gloves while performing tasks involving isocyanates. Based on biomonitoring results, 58.4% of urine samples exceeded the biological monitoring guidance value (BMGV) of 1 µmol hexamethylene diamine (HDA)/mol creatinine. Post-shift geometric mean HDA normalized to specific gravity increased by 2.5-fold compared to pre-shift (GM, 4.7 vs. 1.9 ng/mL; p value, < 0.001), and only 1.4-fold when normalized to creatinine. CONCLUSIONS: Exposure and biomonitoring results, coupled with field observations, support the overall conclusions that (i) substantial inhalation and dermal exposures to aliphatic isocyanates occur during industrial coating applications in construction trades; that (ii) the current work practices and exposure controls are not adequately protective. High urinary creatinine values in the majority of workers, coupled with significant cross-shift increases and filed observations, point to the need for further investigations on possible combined effects of heat stress, dehydration, and nutritional deficiencies on kidney toxicity. Implementation of comprehensive exposure control programs and increased awareness are warranted in order to reduce isocyanate exposures and associated health risks among this cohort of construction workers.


Assuntos
Indústria da Construção , Poluentes Ambientais/urina , Exposição por Inalação/análise , Isocianatos/urina , Exposição Ocupacional/análise , Monitoramento Biológico , Poluentes Ambientais/análise , Feminino , Humanos , Isocianatos/análise , Masculino , Metais , New England , Pintura , Equipamento de Proteção Individual , Pele , Local de Trabalho
5.
Ann Work Expo Health ; 63(5): 592-603, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31066890

RESUMO

BACKGROUND: Polyurethanes are a class of isocyanate-based organic coatings commonly used to control corrosion on high-value metallic structures. Despite their widespread use, dermal exposure to these isocyanate-containing coatings presents a significant occupational health risk to workers, including the development of allergic and irritant contact dermatitis and systemic sensitization. At present, little is known about the effectiveness of the protective garments commonly used to prevent dermal exposure to polyurethane coatings in construction trades. OBJECTIVES: The primary objective of this study was to measure the permeation and penetration of isocyanates from polyurethane anticorrosion coatings though a selection of protective garments. In addition, a standardized spray procedure using a fixed-position spraying technique was evaluated as an option to minimize variability in coating application. METHODS: Five disposable garment materials were evaluated for resistance to isocyanates during this study: latex gloves (0.076 mm), nitrile gloves (0.078 mm), Tyvek coveralls (0.105 mm), polypropylene/polyethylene (PP/PE) coveralls (0.116 mm), and a cotton t-shirt (0.382 mm). A permeation test cell system was used to evaluate each garment material against two products: a polyurethane zinc-rich primer based on 4,4'-methylene diphenyl diisocyanate and an aliphatic finish coating based on prepolymers of 1,6-hexamethylene diisocyanate. Glass fiber filters pretreated with 1-(9-anthracenylmethyl)piperazine were used to collect penetrating isocyanates during the 120-min test period, which were analyzed by liquid chromatography-tandem mass spectrometry. Polytetrafluoroethylene loading filters were sprayed in series with permeation test cells and analyzed gravimetrically to assess the homogeneity of coating application. RESULTS: The latex gloves demonstrated the highest rate of isocyanate permeation of all evaluated garments during testing with both coatings (primer: 27.38 ng cm-2 min-1; finish coating: 7.39 ng cm-2 min-1). Nitrile gloves were much more resistant than latex gloves (primer: 1.89 ng cm-2 min-1; finish coating: 1.26 ng cm-2 min-1) and were not permeated by the finish coating until after 15 min. The PP/PE coverall provided the most consistent resistance to both coatings (primer: 0.08 ng cm-2 min-1; finish coating: 1.27 ng cm-2 min-1), whereas the Tyvek coverall was readily permeated by the primer (primer: 3.47 ng cm-2 min-1; finish coating: 0.87 ng cm-2 min-1). The cotton t-shirt was rapidly permeated by the primer during the first 5 min of exposure (primer: 146.65 ng cm-2 min-1; finish coating: 4.64 ng cm-2 min-1). In addition, the fixed-position spraying technique used during this study demonstrated a significant reduction in loading variability within each batch of test cells when compared to manual spray application. CONCLUSION: Nitrile gloves demonstrated superior resistance to both isocyanate-containing coatings in comparison to latex gloves. Although both coverall materials were resistant to permeating isocyanate within the established thresholds, the PP/PE coverall provided more consistent resistance to both coatings. Owing to the cotton t-shirt's high rate of penetration with both coatings, it is recommended only as a secondary barrier. Study results showed that the use of fixed-position spray techniques provided consistent and reproducible results within each batch of test cells. Additional test design modifications are necessary to further reduce variability between batches and ensure more consistent coating thickness.


Assuntos
Isocianatos/análise , Teste de Materiais/métodos , Exposição Ocupacional/análise , Poliuretanos/efeitos adversos , Roupa de Proteção/normas , Luvas Protetoras/normas , Humanos , Nitrilas , Permeabilidade , Têxteis
6.
Int J Hyg Environ Health ; 222(5): 804-815, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31076286

RESUMO

In this work we characterize personal inhalation and dermal exposures to diphenyl methane diisocyanate (MDI) and other species in polymeric MDI (pMDI) formulations during spray polyurethane foam (SPF) insulation at 14 sites in New England. We further assess the adequacy of current workplace practices and exposure controls via comparative urinary biomonitoring of the corresponding methylene diphenyl diamine (MDA) pre- and post-shift. MDI and pMDI are potent dermal and respiratory sensitizers and asthmagens, strong irritants of the skin, eyes, and the respiratory tract, and may cause skin burns. This study is the first comprehensive report to-date on the work practices, inhalation and dermal exposures to isocyanates and effectiveness of existing controls during SPF applications. Breathing zone exposures to 4,4' MDI (n = 31; 24 sprayers, 7 helpers) ranged from 0.9 to 123.0 µg/m3 and had a geometric mean (GM) of 13.8 µg/m3 and geometric standard deviation (GSD) of 4.8. Stationary near field area samples (n = 15) were higher than personal exposures: GM, 40.9 (GSD, 3.9) µg/m3, range 1.4-240.8 µg/m3. Sixteen percent of personal air samples and 35% of area samples exceeded the National Institute for Occupational Health and Safety's (NIOSH) full shift recommended exposure limit (REL) of 50 µg/m3, assuming zero exposure for the unsampled time. 4,4' MDI load on the glove dosimeters had a GM of 11.4 (GSD 2.9) µg/glove pair/min, suggesting high potential for dermal exposures. Urinary MDA had a GM of 0.7 (GSD, 3.0) µmol MDA/mol creatinine (range, nd-14.5 µmol MDA/mol creatinine). Twenty-five % of urine samples exceeded the Health and Safety Executive (HSE) biological monitoring guidance value (BMGV) of 1 µmol MDA/mol creatinine. We further report on field observations regarding current exposure controls, discuss implications of these findings and opportunities for improving work practices to prevent isocyanate exposures during SPF insulation.


Assuntos
Exposição Ambiental/análise , Exposição por Inalação/análise , Isocianatos/análise , Poliuretanos/análise , National Institute for Occupational Safety and Health, U.S. , New England , Exposição Ocupacional/análise , Medição de Risco , Estados Unidos
7.
Ann Work Expo Health ; 62(6): 754-764, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29762654

RESUMO

Background: Diisocyanates (isocyanates), including methylene diphenyl diisocyanate (MDI), are the primary reactive components of spray polyurethane foam (SPF) insulation. They are potent immune sensitizers and a leading cause of occupational asthma. Skin exposure to isocyanates may lead to both irritant and allergic contact dermatitis and possibly contribute to systemic sensitization. More than sufficient evidence exists to justify the use of protective garments to minimize skin contact with aerosolized and raw isocyanate containing materials during SPF applications. Studies evaluating the permeation of protective garments following exposure to SPF insulation do not currently exist. Objectives: To conduct permeation testing under controlled conditions to assess the effectiveness of common protective gloves and coveralls during SPF applications using realistic SPF product formulations. Methods: Five common disposable garment materials [disposable latex gloves (0.07 mm thickness), nitrile gloves (0.07 mm), vinyl gloves (0.07 mm), polypropylene coveralls (0.13 mm) and Tyvek coveralls (0.13 mm)] were selected for testing. These materials were cut into small pieces and assembled into a permeation test cell system and coated with a two-part slow-rise spray polyurethane foam insulation. Glass fiber filters (GFF) pretreated with 1-(9-anthracenylmethyl)piperazine) (MAP) were used underneath the garment to collect permeating isocyanates. GFF filters were collected at predetermined test intervals between 0.75 and 20.00 min and subsequently analyzed using liquid chromatography-tandem mass spectrometry. For each garment material, we assessed (i) the cumulative concentration of total isocyanate, including phenyl isocyanate and three MDI isomers, that effectively permeated the material over the test time; (ii) estimated breakthrough detection time, average permeation rate, and standardized breakthrough time; from which (iii) recommendations were developed for the use of similar protective garments following contamination by two-component spray polyurethane foam systems and the limitations of such protective garments were identified. Results: Each type of protective garment material demonstrated an average permeation rate well below the ASTM method F-739 standardized breakthrough rate threshold of 100.0 ng/cm2 min-1. Disposable latex gloves displayed the greatest total isocyanate permeation rate (4.11 ng/cm2 min-1), followed by the vinyl and nitrile gloves, respectively. The Tyvek coverall demonstrated a greater average rate of isocyanate permeation than the polypropylene coveralls. Typical isocyanate loading was in the range of 900 to 15,000 ng MDI/cm2. Conclusion: Permeation test data collected during this study indicated that each type of protective garment evaluated, provided a considerable level of protection (i.e. 10-110-fold reduction from the level of direct exposure) against the isocyanate component of the SPF insulation mixture. Nitrile gloves and polypropylene coveralls demonstrated the lowest rate of permeation and the lowest cumulative permeation of total isocyanate for each garment type.


Assuntos
Isocianatos/análise , Teste de Materiais/métodos , Exposição Ocupacional/análise , Poliuretanos/análise , Roupa de Proteção/normas , Luvas Protetoras/normas , Humanos
8.
Environ Int ; 113: 55-65, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421408

RESUMO

BACKGROUND: Spray polyurethane foam (SPF) is a highly effective thermal insulation material that has seen considerable market growth in the past decade. Organophosphate flame retardants (PFRs) are added to SPF formulations to meet fire code requirements. A common flame retardant used in SPF formulations is tris 1-chloro 2-propyl phosphate (TCIPP), a suspected endocrine disruptor. Exposure monitoring efforts during SPF applications have focused primarily on the isocyanate component, a potent respiratory and dermal sensitizer. However, to our knowledge, there is no monitoring data for TCIPP. OBJECTIVE: To characterize occupational exposures to TCIPP and other flame retardants during SPF insulation. METHODS: Workers at four SPF insulation sites and one foam removal site (total n = 14) were recruited as part of this pilot study. Personal inhalation exposure to TCIPP was monitored with a CIP-10MI inhalable sampler and potential dermal exposure was assessed through the use of a glove dosimeter. Biomarkers of TCIPP and three other PFRs were measured in urine collected from workers pre-and post-shift. Linear mixed effect models were used to analyze associations of urinary biomarkers with inhalation and dermal exposures and paired t-tests were used to examine the difference on the means of urinary biomarkers pre-and post-shift. Chemical analysis of all species was performed with liquid chromatography-electrospray ionization tandem mass spectrometry. RESULTS: Geometric mean (GM) concentrations of TCIPP in personal air monitors and glove dosimeters collected from SPF applicators, 294.7 µg/m3 and 18.8 mg/pair respectively. Overall, GM concentrations of the two TCIPP urinary biomarkers BCIPP and BCIPHIPP and (6.2 and 88.8 µg/mL) were 26-35 times higher than reported in the general population. Post-shift levels of TCIPP biomarkers were higher than pre-shift even though workers at insulation sites wore supplied air respirators, gloves and coveralls. The urinary biomarkers for the other PFRs were not elevated post shift. Concentrations of TCIPP on glove dosimeters were positively associated with post-shift urinary TCIPP biomarkers (p < 0.05) whereas concentrations in personal air samples were not. CONCLUSIONS: High levels of urinary biomarkers for TCIPP among SPF applicators, including post-shift, points to absorption of TCIPP during the work shift, in spite of the use of best industry exposure control practices. Dermal exposure appears to be an important, if not the primary exposure pathway for TCIPP, although inhalation or incidental ingestion of foam particles post-SPF application cannot be ruled out in this pilot study.


Assuntos
Retardadores de Chama/análise , Exposição Ocupacional/análise , Organofosfatos/urina , Poliuretanos , Biomarcadores/urina , Indústria da Construção , Humanos , Equipamento de Proteção Individual , Projetos Piloto , Poliuretanos/efeitos adversos , Poliuretanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...