Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38891388

RESUMO

Selenium (Se) is crucial for both plants and humans, with plants acting as the main source for human Se intake. In plants, moderate Se enhances growth and increases stress resistance, whereas excessive Se leads to toxicity. The physiological mechanisms by which Se influences rice seedlings' growth are poorly understood and require additional research. In order to study the effects of selenium stress on rice seedlings, plant phenotype analysis, root scanning, metal ion content determination, physiological response index determination, hormone level determination, quantitative PCR (qPCR), and other methods were used. Our findings indicated that sodium selenite had dual effects on rice seedling growth under hydroponic conditions. At low concentrations, Se treatment promotes rice seedling growth by enhancing biomass, root length, and antioxidant capacity. Conversely, high concentrations of sodium selenite impair and damage rice, as evidenced by leaf yellowing, reduced chlorophyll content, decreased biomass, and stunted growth. Elevated Se levels also significantly affect antioxidase activities and the levels of proline, malondialdehyde, metal ions, and various phytohormones and selenium metabolism, ion transport, and antioxidant genes in rice. The adverse effects of high Se concentrations may directly disrupt protein synthesis or indirectly induce oxidative stress by altering the absorption and synthesis of other compounds. This study aims to elucidate the physiological responses of rice to Se toxicity stress and lay the groundwork for the development of Se-enriched rice varieties.

2.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791379

RESUMO

Manganese (Mn) is a heavy metal that can cause excessive Mn poisoning in plants, disrupting microstructural homeostasis and impairing growth and development. However, the specific response mechanisms of leaves to Mn poisoning have not been fully elucidated. This study revealed that Mn poisoning of soybean plants resulted in yellowing of old leaves. Physiological assessments of these old leaves revealed significant increases in the antioxidant enzymes activities (peroxidase (POD), superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)) and elevated levels of malondialdehyde (MDA), proline, indoleacetic acid (IAA), and salicylic acid (SA), under 100 µM Mn toxicity. Conversely, the levels of abscisic acid (ABA), gibberellin 3 (GA3), and jasmonic acid (JA) significantly decreased. The Mn content in the affected leaves significantly increased, while the levels of Ca, Na, K, and Cu decreased. Transcriptome analysis revealed 2258 differentially expressed genes in the Mn-stressed leaves, 744 of which were upregulated and 1514 were downregulated; these genes included genes associated with ion transporters, hormone synthesis, and various enzymes. Quantitative RT-PCR (qRT-PCR) verification of fifteen genes confirmed altered gene expression in the Mn-stressed leaves. These findings suggest a complex gene regulatory mechanism under Mn toxicity and stress, providing a foundation for further exploration of Mn tolerance-related gene regulatory mechanisms in soybean leaves. Using the methods described above, this study will investigate the molecular mechanism of old soybean leaves' response to Mn poisoning, identify key genes that play regulatory roles in Mn toxicity stress, and lay the groundwork for cultivating high-quality soybean varieties with Mn toxicity tolerance traits.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Manganês , Folhas de Planta , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Manganês/toxicidade , Manganês/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Malondialdeído/metabolismo , Perfilação da Expressão Gênica
3.
Metabolites ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38668372

RESUMO

Rice (Oryza sativa L.), a crucial food crop that sustains over half the world's population, is often hindered by salt stress during various growth stages, ultimately causing a decrease in yield. However, the specific mechanism of rice roots' response to salt stress remains largely unknown. In this study, transcriptomics and lipidomics were used to analyze the changes in the lipid metabolism and gene expression profiles of rice roots in response to salt stress. The results showed that salt stress significantly inhibited rice roots' growth and increased the roots' MDA content. Furthermore, 1286 differentially expressed genes including 526 upregulated and 760 downregulated, were identified as responding to salt stress in rice roots. The lipidomic analysis revealed that the composition and unsaturation of membrane lipids were significantly altered. In total, 249 lipid molecules were differentially accumulated in rice roots as a response to salt stress. And most of the major phospholipids, such as phosphatidic acid (PA), phosphatidylcholine (PC), and phosphatidylserine (PS), as well as major sphingolipids including ceramide (Cer), phytoceramide (CerP), monohexose ceramide (Hex1Cer), and sphingosine (SPH), were significantly increased, while the triglyceride (TG) molecules decreased. These results suggested that rice roots mitigate salt stress by altering the fluidity and integrity of cell membranes. This study enhances our comprehension of salt stress, offering valuable insights into changes in the lipids and adaptive lipid remodeling in rice's response to salt stress.

4.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339080

RESUMO

Nitrogen fixation, occurring through the symbiotic relationship between legumes and rhizobia in root nodules, is crucial in sustainable agriculture. Nodulation and soybean production are influenced by low levels of phosphorus stress. In this study, we discovered a MADS transcription factor, GmAGL82, which is preferentially expressed in nodules and displays significantly increased expression under conditions of phosphate (Pi) deficiency. The overexpression of GmAGL82 in composite transgenic plants resulted in an increased number of nodules, higher fresh weight, and enhanced soluble Pi concentration, which subsequently increased the nitrogen content, phosphorus content, and overall growth of soybean plants. Additionally, transcriptome analysis revealed that the overexpression of GmAGL82 significantly upregulated the expression of genes associated with nodule growth, such as GmENOD100, GmHSP17.1, GmHSP17.9, GmSPX5, and GmPIN9d. Based on these findings, we concluded that GmAGL82 likely participates in the phosphorus signaling pathway and positively regulates nodulation in soybeans. The findings of this research may lay the theoretical groundwork for further studies and candidate gene resources for the genetic improvement of nutrient-efficient soybean varieties in acidic soils.


Assuntos
Fósforo , Nodulação , Fósforo/metabolismo , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Glycine max/genética , Fixação de Nitrogênio/genética , Simbiose , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Plants (Basel) ; 13(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276782

RESUMO

Al (Aluminum) poisoning is a significant limitation to crop yield in acid soil. However, the physiological process involved in the peanut root response to Al poisoning has not been clarified yet and requires further research. In order to investigate the influence of Al toxicity stress on peanut roots, this study employed various methods, including root phenotype analysis, scanning of the root, measuring the physical response indices of the root, measurement of the hormone level in the root, and quantitative PCR (qPCR). This research aimed to explore the physiological mechanism underlying the reaction of peanut roots to Al toxicity. The findings revealed that Al poisoning inhibits the development of peanut roots, resulting in reduced biomass, length, surface area, and volume. Al also significantly affects antioxidant oxidase activity and proline and malondialdehyde contents in peanut roots. Furthermore, Al toxicity led to increased accumulations of Al and Fe in peanut roots, while the contents of zinc (Zn), cuprum (Cu), manganese (Mn), kalium (K), magnesium (Mg), and calcium (Ca) decreased. The hormone content and related gene expression in peanut roots also exhibited significant changes. High concentrations of Al trigger cellular defense mechanisms, resulting in differentially expressed antioxidase genes and enhanced activity of antioxidases to eliminate excessive ROS (reactive oxygen species). Additionally, the differential expression of hormone-related genes in a high-Al environment affects plant hormones, ultimately leading to various negative effects, for example, decreased biomass of roots and hindered root development. The purpose of this study was to explore the physiological response mechanism of peanut roots subjected to aluminum toxicity stress, and the findings of this research will provide a basis for cultivating Al-resistant peanut varieties.

6.
Plant Cell Environ ; 47(1): 259-277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691629

RESUMO

Phosphorus (P) is an essential nutrient, but easily fixed in soils. Therefore, most of soil P exists in the form of inaccessible organic phosphorus (Po), particularly phytate-P. Root-associated purple acid phosphatases (PAPs) are considered to play a crucial role in phosphate (Pi) scavenging in soils. However, evidence for regulating root-associated PAPs in utilization of extracellular phytate-P remain largely unknown in plants at both transcriptional and posttranslational levels. In this study, a Pi-starvation responsive GmPAP15a was identified in soybean (Glycine max). Overexpressing GmPAP15a led to significant increases in root-associated phytase activities, as well as total P content when phytate-P was supplied as the sole P resource in soybean hairy roots. Meanwhile, mass spectrometry (MS) analysis showed GmPAP15a was glycosylated at Asn144 and Asn502 , and its glycan structures of N-linked oligosaccharide chains exhibited microheterogeneity. Moreover, two homologues of AtPHR1, GmPHR9 and GmPHR32 were found to activate GmPAP15a transcription through luciferase activity analysis. Taken together, it is strongly suggested that GmPAP15a plays a vital role in phytate-P utilization in soybean, which might be regulated at both transcriptional and glycosylation modification levels. Our results highlight the GmPHR9/GmPHR32-GmPAP15a signalling pathway might present, and control phytate-P utilization in soybean.


Assuntos
Glycine max , Ácido Fítico , Glycine max/metabolismo , Glicosilação , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fósforo/metabolismo , Solo
7.
Genes (Basel) ; 14(12)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38136931

RESUMO

Malate dehydrogenase (MDH) is one kind of oxidation-reduction enzyme that catalyzes the reversible conversion of oxaloacetic acid to malic acid. It has vital functions in plant development, photosynthesis, abiotic stress responses, and so on. However, there are no reports on the genome-wide identification and gene expression of the MDH gene family in Arachis hypogaea. In this study, the MDH gene family of A. hypogaea was comprehensively analyzed for the first time, and 15 AhMDH sequences were identified. According to the phylogenetic tree analysis, AhMDHs are mainly separated into three subfamilies with similar gene structures. Based on previously reported transcriptome sequencing results, the AhMDH expression quantity of roots and leaves exposed to manganese (Mn) toxicity were explored in A. hypogaea. Results revealed that many AhMDHs were upregulated when exposed to Mn toxicity, suggesting that those AhMDHs might play an important regulatory role in A. hypogaea's response to Mn toxicity stress. This study lays foundations for the functional study of AhMDHs and further reveals the mechanism of the A. hypogaea signaling pathway responding to high Mn stress.


Assuntos
Arachis , Manganês , Arachis/metabolismo , Manganês/toxicidade , Manganês/metabolismo , Filogenia , Genoma de Planta/genética , Expressão Gênica
8.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37628908

RESUMO

Manganese (Mn) is among one of the essential trace elements for normal plant development; however, excessive Mn can cause plant growth and development to be hindered. Nevertheless, the regulatory mechanisms of plant root response to Mn poisoning remain unclear. In the present study, results revealed that the root growth was inhibited when exposed to Mn poisoning. Physiological results showed that the antioxidase enzyme activities (peroxidase, superoxide dismutase, ascorbate peroxidase, and catalase) and the proline, malondialdehyde, and soluble sugar contents increased significantly under Mn toxicity stress (100 µM Mn), whereas the soluble protein and four hormones' (indolebutyric acid, abscisic acid, indoleacetic acid, and gibberellic acid 3) contents decreased significantly. In addition, the Mn, Fe, Na, Al, and Se contents in the roots increased significantly, whereas those of Mg, Zn, and K decreased significantly. Furthermore, RNA sequencing (RNA-seq) analysis was used to test the differentially expressed genes (DEGs) of soybean root under Mn poisoning. The results found 45,274 genes in soybean root and 1430 DEGs under Mn concentrations of 5 (normal) and 100 (toxicity) µM. Among these DEGs, 572 were upregulated and 858 were downregulated, indicating that soybean roots may initiate complex molecular regulatory mechanisms on Mn poisoning stress. The results of quantitative RT-PCR indicated that many DEGs were upregulated or downregulated markedly in the roots, suggesting that the regulation of DEGs may be complex. Therefore, the regulatory mechanism of soybean root on Mn toxicity stress is complicated. Present results lay the foundation for further study on the molecular regulation mechanism of function genes involved in regulating Mn tolerance traits in soybean roots.


Assuntos
Glycine max , Transcriptoma , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Manganês/toxicidade , Biomassa , Homeostase , Reguladores de Crescimento de Plantas/metabolismo , Análise de Sequência de RNA
9.
BMC Plant Biol ; 23(1): 180, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020215

RESUMO

BACKGROUND: Due to global warming, drought climates frequently occur on land, and despite being drought resistant, pineapples are still subjected to varying degrees of drought stress. Plant growth regulators can regulate the stress tolerance of plants through hormonal effects. This experiment aims to investigate the regulatory effects of different plant growth regulators on Tainong- 16 and MD-2 Pineapple when subjected to drought stress. RESULTS: In this experiment, we examined the regulatory effects of two different plant growth regulators, sprayed on two pineapple varieties: MD-2 Pineapple and Tainong-16. The main component of T1 was diethyl aminoethyl hexanoate (DA-6) and that of T2 is chitosan oligosaccharide (COS). An environment similar to a natural drought was simulated in the drought stress treatments. Then, pineapples at different periods were sampled and a series of indicators were measured. The experimental results showed that the drought treatments treated with T1 and T2 plant growth regulators had a decrease in malondialdehyde, an increase in bromelain and antioxidant enzyme indicators, and an increase in phenotypic and yield indicators. CONCLUSION: This experiment demonstrated that DA-6 and COS can enhance the drought resistance of pineapple plants to a certain extent through bromelain and oxidative stress. Therefore, DA-6 and COS have potential applications and this experiment lays the foundation for further research.


Assuntos
Ananas , Reguladores de Crescimento de Plantas , Resistência à Seca , Bromelaínas , Estresse Oxidativo , Secas , Estresse Fisiológico
10.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674676

RESUMO

Excess Manganese (Mn) is toxic to plants and reduces crop production. Although physiological and molecular pathways may drive plant responses to Mn toxicity, few studies have evaluated Mn tolerance capacity in roots and leaves. As a result, the processes behind Mn tolerance in various plant tissue or organ are unclear. The reactivity of peanut (Arachis hypogaea) to Mn toxicity stress was examined in this study. Mn oxidation spots developed on peanut leaves, and the root growth was inhibited under Mn toxicity stress. The physiological results revealed that under Mn toxicity stress, the activities of antioxidases and the content of proline in roots and leaves were greatly elevated, whereas the content of soluble protein decreased. In addition, manganese and iron ion content in roots and leaves increased significantly, but magnesium ion content decreased drastically. The differentially expressed genes (DEGs) in peanut roots and leaves in response to Mn toxicity were subsequently identified using genome-wide transcriptome analysis. Transcriptomic profiling results showed that 731 and 4589 DEGs were discovered individually in roots and leaves, respectively. Furthermore, only 310 DEGs were frequently adjusted and controlled in peanut roots and leaves, indicating peanut roots and leaves exhibited various toxicity responses to Mn. The results of qRT-PCR suggested that the gene expression of many DEGs in roots and leaves was inconsistent, indicating a more complex regulation of DEGs. Therefore, different regulatory mechanisms are present in peanut roots and leaves in response to Mn toxicity stress. The findings of this study can serve as a starting point for further research into the molecular mechanism of important functional genes in peanut roots and leaves that regulate peanut tolerance to Mn poisoning.


Assuntos
Fabaceae , Transcriptoma , Arachis/genética , Arachis/metabolismo , Manganês/toxicidade , Manganês/metabolismo , Regulação da Expressão Gênica de Plantas , Fabaceae/genética , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico/genética
11.
Plant Physiol Biochem ; 194: 731-741, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36577197

RESUMO

Phosphorus (P) is one of the principal macronutrients for plant growth and productivity. Although the phosphate (Pi) transporter (PT) of the PHT1 family has been functionally characterized as participating in Pi uptake and transport in plants, information about PT genes in stylo (Stylosanthes guianensis), an important tropical forage legume that exhibits good adaptability to low-P acid soils, is limited. In this study, stylo root growth was found to be stimulated under P deficiency. The responses of PT genes to nutrient deficiencies and their roles in Pi uptake were further investigated in stylo. Four novel PT genes were identified in stylo and designated SgPT2 to SgPT5. Like SgPT1, which had been previously identified, all five SgPT proteins harboured the major facilitator superfamily (MFS) domain. Variations in tissue-specific expression were observed among the SgPT genes, which displayed diverse responses to deficiencies in nitrogen (N), P and potassium (K) in stylo roots. Four of the five SgPTs exhibited high levels of transcriptional responsiveness to P deficiency in roots. Furthermore, SgPT1, a Pi-starvation-induced gene closely related to legume PT homologues that participate in Pi transport, was selected for functional analysis. SgPT1 was localized to the plasma membrane. Analysis of transgenic Arabidopsis showed that overexpression of SgPT1 led to increased Pi accumulation and promoted root growth in Arabidopsis plants. Taken together, the results of this study suggest the involvement of SgPTs in the stylo response to nutrient deprivation. SgPT1 might mediate Pi uptake in stylo, which is beneficial for root growth during P deficiency.


Assuntos
Arabidopsis , Fabaceae , Fosfatos/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
12.
Plants (Basel) ; 11(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36079619

RESUMO

Low phosphate (Pi) availability in soils severely limits crop growth and production. Plants have evolved to have numerous physiological and molecular adaptive mechanisms to cope with Pi starvation. The release of Pi from membrane phospholipids is considered to improve plant phosphorus (P) utilization efficiency in response to Pi starvation and accompanies membrane lipid remodeling. In this review, we summarize recent discoveries related to this topic and the molecular basis of membrane phospholipid alteration and triacylglycerol metabolism in response to Pi depletion in plants at different subcellular levels. These findings will help to further elucidate the molecular mechanisms underlying plant adaptation to Pi starvation and thus help to develop crop cultivars with high P utilization efficiency.

13.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012343

RESUMO

Crop growth and yield often face sophisticated environmental stresses, especially the low availability of mineral nutrients in soils, such as deficiencies of nitrogen, phosphorus, potassium, and others. Thus, it is of great importance to understand the mechanisms of crop response to mineral nutrient deficiencies, as a basis to contribute to genetic improvement and breeding of crop varieties with high nutrient efficiency for sustainable agriculture. With the advent of large-scale omics approaches, the metabolome based on mass spectrometry has been employed as a powerful and useful technique to dissect the biochemical, molecular, and genetic bases of metabolisms in many crops. Numerous metabolites have been demonstrated to play essential roles in plant growth and cellular stress response to nutrient limitations. Therefore, the purpose of this review was to summarize the recent advances in the dissection of crop metabolism responses to deficiencies of mineral nutrients, as well as the underlying adaptive mechanisms. This review is intended to provide insights into and perspectives on developing crop varieties with high nutrient efficiency through metabolite-based crop improvement.


Assuntos
Nitrogênio , Fósforo , Metaboloma , Minerais , Nitrogênio/metabolismo , Nutrientes/análise , Fósforo/metabolismo , Melhoramento Vegetal , Potássio
14.
Plant J ; 108(5): 1422-1438, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34587329

RESUMO

Phosphorus (P) deficiency adversely affects nodule development as reflected by reduced nodule fresh weight in legume plants. Though mechanisms underlying nodule adaptation to P deficiency have been studied extensively, it remains largely unknown which regulator mediates nodule adaptation to P deficiency. In this study, GUS staining and quantitative reverse transcription-PCR analysis reveal that the SPX member GmSPX5 is preferentially expressed in soybean (Glycine max) nodules. Overexpression of GmSPX5 enhanced soybean nodule development particularly under phosphate (Pi) sufficient conditions. However, the Pi concentration was not affected in soybean tissues (i.e., leaves, roots, and nodules) of GmSPX5 overexpression or suppression lines, which distinguished it from other well-known SPX members functioning in control of Pi homeostasis in plants. Furthermore, GmSPX5 was observed to interact with the transcription factor GmNF-YC4 in vivo and in vitro. Overexpression of either GmSPX5 or GmNF-YC4 significantly upregulated the expression levels of five asparagine synthetase-related genes (i.e., GmASL2-6) in soybean nodules. Meanwhile, yeast one-hybrid and luciferase activity assays strongly suggested that interactions of GmSPX5 and GmNF-YC4 activate GmASL6 expression through enhancing GmNF-YC4 binding of the GmASL6 promoter. These results not only demonstrate the GmSPX5-GmNF-YC4-GmASL6 regulatory pathway mediating soybean nodule development, but also considerably improve our understanding of SPX functions in legume crops.


Assuntos
Glycine max/genética , Fosfatos/deficiência , Proteínas de Plantas/metabolismo , Adaptação Fisiológica , Homeostase , Fósforo/deficiência , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant Physiol Biochem ; 155: 231-242, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32781273

RESUMO

Manganese (Mn) is an essential micronutrient for plant growth. However, excess manganese is toxic and inhibits crop production. Although it is widely known that physiological and molecular mechanisms underlie plant responses to Mn toxicity, few studies have been conducted to compare Mn tolerance capabilities between young and old leaves in plants; thus, the mechanisms underlying Mn tolerance in different plant tissues or organs are not fully understood. In this study, the dose responses of soybean to Mn availability were investigated. Genome-wide transcriptomic analysis was subsequently conducted to identify the differentially expressed genes (DEGs) in both young and old leaves of soybean in responses to Mn toxicity. Our results showed that excess Mn severely inhibited soybean growth and increased both Mn accumulation in and brown spots on soybean leaves, especially for the old leaves, strongly suggesting that more Mn was allocated to old leaves in soybean. Transcriptomic profiling revealed that totals of 4410 and 2258 DEGs were separately identified in young leaves and old leaves. Furthermore, only 944 DEGs were found to be commonly regulated in both young and old leaves of soybean, strongly suggesting distinct responses present in soybean young and old leaves in responses to Mn toxicity.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Manganês/toxicidade , Folhas de Planta/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Transcriptoma
16.
Front Plant Sci ; 11: 661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670306

RESUMO

Low phosphate (Pi) availability limits crop growth and yield in acid soils. Although root-associated acid phosphatases (APases) play an important role in extracellular organic phosphorus (P) utilization, they remain poorly studied in soybean (Glycine max), an important legume crop. In this study, dynamic changes in intracellular (leaf and root) and root-associated APase activities were investigated under both Pi-sufficient and Pi-deficient conditions. Moreover, genome-wide identification of members of the purple acid phosphatase (PAP) family and their expression patterns in response to Pi starvation were analyzed in soybean. The functions of both GmPAP7a and GmPAP7b, whose expression is up regulated by Pi starvation, were subsequently characterized. Phosphate starvation resulted in significant increases in intracellular APase activities in the leaves after 4 days, and in root intracellular and associated APase activities after 1 day, but constant increases were observed only for root intracellular and associated APase activities during day 5-16 of P deficiency in soybean. Moreover, a total of 38 GmPAP members were identified in the soybean genome. The transcripts of 19 GmPAP members in the leaves and 17 in the roots were upregulated at 16 days of P deficiency despite the lack of a response for any GmPAP members to Pi starvation at 2 days. Pi starvation upregulated GmPAP7a and GmPAP7b, and they were subsequently selected for further analysis. Both GmPAP7a and GmPAP7b exhibited relatively high activities against adenosine triphosphate (ATP) in vitro. Furthermore, overexpressing GmPAP7a and GmPAP7b in soybean hairy roots significantly increased root-associated APase activities and thus facilitated extracellular ATP utilization. Taken together, these results suggest that GmPAP7a and GmPAP7b might contribute to root-associated APase activities, thus having a function in extracellular ATP utilization in soybean.

17.
Biol Futur ; 70(1): 8-15, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34554435

RESUMO

INTRODUCTION: We investigated the main factors affecting the efficacy of protoplast isolation, including leaf-obtaining period, cutting shapes of leaf material, enzyme concentration, enzymolysis time, and centrifugal speed. METHODS: Protoplast isolation was optimal on the condition of 20 days of leaf materials, 2-mm filament of leaves, 1.6% RS and 0.8% R-10, 80 min of enzymolysis, and 700 rpm of centrifugation, resulting in the best yield (1.19 X 106 protoplasts/g FW) and vitality (80.34%) of mesophyll protoplasts. The transient expression vector pGFPl with green fluorescent protein was transfected into the obtained protoplasts from castor by polyethylene glycol-mediated method with a transformation efficiency of 12.37%. RESULTS: Moreover, the applicability of the system for studying the subcellular localization of Re FATA (an acyl-ACP thioesterase) was validated via the protoplast isolation and transient expression protocol in this study. DISCUSSION: Collectively, the efficient mesophyll protoplast isolation and protoplast transient expression system facilitate to analyze the function of specific gene in castor (Ricinus communis L).

18.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261621

RESUMO

Phosphorus (P) deficiency is a major limitation for legume crop production. Although overall adaptations of plant roots to P deficiency have been extensively studied, only fragmentary information is available in regard to root nodule responses to P deficiency. In this study, genome wide transcriptome analysis was conducted using RNA-seq analysis in soybean nodules grown under P-sufficient (500 µM KH2PO4) and P-deficient (25 µM KH2PO4) conditions to investigate molecular mechanisms underlying soybean (Glycine max) nodule adaptation to phosphate (Pi) starvation. Phosphorus deficiency significantly decreased soybean nodule growth and nitrogenase activity. Nodule Pi concentrations declined by 49% in response to P deficiency, but this was well below the 87% and 88% decreases observed in shoots and roots, respectively. Nodule transcript profiling revealed that a total of 2055 genes exhibited differential expression patterns between Pi sufficient and deficient conditions. A set of (differentially expressed genes) DEGs appeared to be involved in maintaining Pi homeostasis in soybean nodules, including eight Pi transporters (PTs), eight genes coding proteins containing the SYG1/PHO81/XPR1 domain (SPXs), and 16 purple acid phosphatases (PAPs). The results suggest that a complex transcriptional regulatory network participates in soybean nodule adaption to Pi starvation, most notable a Pi signaling pathway, are involved in maintaining Pi homeostasis in nodules.


Assuntos
Perfilação da Expressão Gênica/métodos , Genoma de Planta/genética , Glycine max/genética , Homeostase , Fosfatos/metabolismo , Nódulos Radiculares de Plantas/genética , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Glycine max/metabolismo
19.
J Exp Bot ; 68(17): 4951-4967, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28992334

RESUMO

As an essential nutrient element, phosphorus (P) plays an important role in plant growth and development. Low P availability is a limiting factor for crop production, especially for legume crops (e.g. soybean), which require additional P to sustain nitrogen fixation through symbiotic associations with rhizobia. Although PHOSPHATE STARVATION RESPONSE 1 (PHR1) or PHR1-like is considered as a central regulator of phosphate (Pi) homeostasis in several plant species, it remains undefined in soybean. In this study, 35 GmPHR members were cloned from the soybean genome and expression patterns in soybean were assayed under nitrogen (N) and P deficiency conditions. GmPHR25, which is up-regulated in response to Pi starvation, was then overexpressed in soybean hairy roots in vitro and in vivo to investigate its functions. The results showed that overexpressing GmPHR25 increased Pi concentration in transgenic soybean hairy roots under normal conditions, accompanied with a significant decrease in hairy root growth. Furthermore, transcripts of 11 out of 14 high-affinity Pi transporter (GmPT) members as well as five other Pi starvation-responsive genes were significantly increased in soybean hairy roots with GmPHR25 overexpression. Taken together, this study suggests that GmPHR25 is a vital regulator in the P signaling network, and controls Pi homeostasis in soybean.


Assuntos
Regulação da Expressão Gênica de Plantas , Homeostase , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Glycine max/genética , Glycine max/metabolismo , Regulação para Cima
20.
J Exp Bot ; 67(14): 4141-54, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27194738

RESUMO

Stylo (Stylosanthes spp.) is a pasture legume predominant in tropical and subtropical areas, where low phosphorus (P) availability is a major constraint for plant growth. Therefore, stylo might exhibit superior utilization of the P pool on acid soils, particularly organic P. However, little is known about mechanisms of inorganic phosphate (Pi) acquisition employed by stylo. In this study, the utilization of extracellular deoxy-ribonucleotide triphosphate (dNTP) and the underlying physiological and molecular mechanisms were examined for two stylo genotypes with contrasting P efficiency. Results showed that the P-efficient genotype, TPRC2001-1, was superior to the P-inefficient genotype, Fine-stem, when using dNTP as the sole P source. This was reflected by a higher dry weight and total P content for TPRC2001-1 than for Fine-stem, which was correlated with higher root-associated acid phosphatase (APase) activities in TPRC2001-1 under low P conditions. Subsequently, three PAP members were cloned from TPRC2001-1: SgPAP7, SgPAP10, and SgPAP26 Expression levels of these three SgPAPs were up-regulated by Pi starvation in stylo roots. Furthermore, there was a higher abundance of transcripts of SgPAP7 and SgPAP10 in TPRC2001-1 than in Fine-stem. Subcellular localization analysis demonstrated that these three SgPAPs were localized on the plasma membrane. Overexpression of these three SgPAPs could result in significantly increased root-associated APase activities, and thus extracellular dNTP utilization in bean hairy roots. Taken together, the results herein suggest that SgPAP7, SgPAP10, and SgPAP26 may differentially contribute to root-associated APase activities, and thus control extracellular dNTP utilization in stylo.


Assuntos
Fosfatase Ácida/metabolismo , Desoxirribonucleotídeos/metabolismo , Fabaceae/enzimologia , Glicoproteínas/metabolismo , Fosfatase Ácida/genética , Fosfatase Ácida/fisiologia , Fabaceae/genética , Fabaceae/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Glicoproteínas/genética , Glicoproteínas/fisiologia , Filogenia , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...