Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(5): 1348-1353, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36208234

RESUMO

OBJECTIVE: To explore the extrinsic regulation mechanism of bone marrow microenvironment in leukemia cells, and investigate the promoting effect of osteoblast niche on the proliferation and self-renewal of leukemia stem cell by up-regulating the expression of interleukin-1 (IL-1) in leukemia cell. METHODS: The gene expression profiles on leukemia cells derived from AE9a mouse bone marrow endosteum and central bone marrow were determined by RNA sequencing and gene set enrichment analysis (GSEA). Quantitative real-time PCR (qRT-PCR) was used to detect the expression of IL-1 in AE9a mouse leukemia cells co-cultured with or without osteoblasts in vitro. In addition, qRT-PCR was also used to determine the expression of IL-1 in bone marrow mononuclear cell (BMMNC) from 43 patients with acute myeloid leukemia (AML). For leukemia cells co-cultured with osteoblasts or treated with IL-1ß, colony forming ability of AE9a leukemia cells was determined by colony formation assay. RESULTS: In AE9a leukemia mouse, RNA-seq data and GSEA showed that the enrichment of the upregulated genes in leukemia cells located in endosteum fell into inflammatory response gene set, among them, IL-1α and IL-1ß were significantly higher expressed in AE9a leukemia cells that located osteoblast niche (IL-1α: P<0.001, IL-1ß:P<0.001). After AE9a leukemia cells were co-cultured with osteoblasts in vitro, the expression of IL-1α and IL-1ß in leukemia cells were increased by 2.5 and 3.5 times respectively. In colony formation assay, the number of colonies was increased significantly after leukemia cells were co-cultured with osteoblasts (P<0.001). In addition, when AE9a leukemia cells were treated with IL-1ß, the number of colonies was also increased significantly (P<0.01). In AML patients, BMMNC with high percentage of CD34 positive cells exhibited higher level of IL-1 expression. CONCLUSION: Osteoblast niche can promote leukemia cell proliferation and self-renewal through up-regulating the expression of IL-1 in leukemia cells. In AML patients, the expression level of IL-1 was correlated to the percentage of CD34 positive cells in BMMNC.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Animais , Antígenos CD34/metabolismo , Medula Óssea/metabolismo , Proliferação de Células , Leucemia Mieloide Aguda/metabolismo , Camundongos , Osteoblastos/metabolismo , Células-Tronco , Microambiente Tumoral
2.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(3): 970-975, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31204963

RESUMO

OBJECTIVE: To explore the oxidative damage of OP9 cells induced by daunorubicin (DNR) treatment. METHODS: The TMRM probe was used to detect mitochondrial membrane potential by flow cytometry; the reactive oxygen species (ROS) was determined by flow cytometry DCFDA probe; the real-time PCR was used to detect the molecular expression of antioxidant enzyme,glutathione peroxidase (GPX) in OP9 cells; the expression of γ-H2AX was determined by flow cytometry. RESULTS: Compared with normal OP9 cells, the positive rate of TMRM in DNR-treated OP9 cells decreased by 56.7% (P<0.05); the positive rate of DCFDA in DNR-treated OP9 cells increased by 3.52 times (P<0.01). Compared with normal OP9 cells, DNR-treated OP9 cells showed a decrease in the expression of GPX4 by 44.22% (P<0.001); the expression of GPX7 decreased by 65.7% (P<0.001); the expression of GPX8 decreased by 24.7% (P<0.001); the positive rate of γ-H2AX in DNR-treated OP9 cells increased (P<0.05). CONCLUSION: After DNR treatment, mitochondrial membrane potential of OP9 cells decreases; the level of reactive oxygen species increases; the expression of glutathione peroxidase (GPX) molecules decreases significantly; genomic instability increases obviously; the oxidative damage of cells increased.


Assuntos
Células-Tronco Mesenquimais , Apoptose , Daunorrubicina , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...