Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(12): 123603, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179176

RESUMO

Cavity optomechanical systems make possible the fine manipulation of mechanical degrees of freedom with light, adding functionality and having broad appeal in photonic technologies. We show that distinct mechanical modes can be exploited with a temporally modulated Floquet drive to steer between distinct steady states induced by changes of cavity radiation pressure. We investigate the additional influence of the thermo-optic nonlinearity on these dynamics and find that it can suppress or amplify the control mechanism in contrast to its often performance-limiting character. Our results provide new techniques for the characterization of thermal properties of optomechanical systems and their control, sensing and computational applications.

2.
Phys Rev Lett ; 127(7): 073601, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459652

RESUMO

Dynamical radiation pressure effects in cavity optomechanical systems give rise to self-sustained oscillations or 'phonon lasing' behavior, producing stable oscillators up to GHz frequencies in nanoscale devices. Like in photonic lasers, phonon lasing normally occurs in a single mechanical mode. We show here that mode-locked, multimode phonon lasing can be established in a multimode optomechanical system through Floquet dynamics induced by a temporally modulated laser drive. We demonstrate this concept in a suitably engineered silicon photonic nanocavity coupled to multiple GHz-frequency mechanical modes. We find that the long-term frequency stability is significantly improved in the multimode lasing state as a result of the mode locking. These results provide a path toward highly stable ultracompact oscillators, pulsed phonon lasing, coherent waveform synthesis, and emergent many-mode phenomena in oscillator arrays.

3.
Proc Natl Acad Sci U S A ; 116(14): 6684-6688, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872476

RESUMO

Quantum entanglement is one of the most extraordinary effects in quantum physics, with many applications in the emerging field of quantum information science. In particular, it provides the foundation for quantum key distribution (QKD), which promises a conceptual leap in information security. Entanglement-based QKD holds great promise for future applications owing to the possibility of device-independent security and the potential of establishing global-scale quantum repeater networks. While other approaches to QKD have already reached the level of maturity required for operation in absence of typical laboratory infrastructure, comparable field demonstrations of entanglement-based QKD have not been performed so far. Here, we report on the successful distribution of polarization-entangled photon pairs between Malta and Sicily over 96 km of submarine optical telecommunications fiber. We observe around 257 photon pairs per second, with a polarization visibility above 90%. Our results show that QKD based on polarization entanglement is now indeed viable in long-distance fiber links. This field demonstration marks the longest-distance distribution of entanglement in a deployed telecommunications network and demonstrates an international submarine quantum communication channel. This opens up myriad possibilities for future experiments and technological applications using existing infrastructure.

4.
Science ; 361(6401): 486-490, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29903881

RESUMO

Detecting ocean-floor seismic activity is crucial for our understanding of the interior structure and dynamic behavior of Earth. However, 70% of the planet's surface is covered by water, and seismometer coverage is limited to a handful of permanent ocean bottom stations. We show that existing telecommunication optical fiber cables can detect seismic events when combined with state-of-the-art frequency metrology techniques by using the fiber itself as the sensing element. We detected earthquakes over terrestrial and submarine links with lengths ranging from 75 to 535 kilometers and a geographical distance from the earthquake's epicenter ranging from 25 to 18,500 kilometers. Implementing a global seismic network for real-time detection of underwater earthquakes requires applying the proposed technique to the existing extensive submarine optical fiber network.

5.
Phys Rev Lett ; 120(6): 060601, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481225

RESUMO

There has been significant interest recently in using complex quantum systems to create effective nonreciprocal dynamics. Proposals have been put forward for the realization of artificial magnetic fields for photons and phonons; experimental progress is fast making these proposals a reality. Much work has concentrated on the use of such systems for controlling the flow of signals, e.g., to create isolators or directional amplifiers for optical signals. In this Letter, we build on this work but move in a different direction. We develop the theory of and discuss a potential realization for the controllable flow of thermal noise in quantum systems. We demonstrate theoretically that the unidirectional flow of thermal noise is possible within quantum cascaded systems. Viewing an optomechanical platform as a cascaded system we show here that one can ultimately control the direction of the flow of thermal noise. By appropriately engineering the mechanical resonator, which acts as an artificial reservoir, the flow of thermal noise can be constrained to a desired direction, yielding a thermal rectifier. The proposed quantum thermal noise rectifier could potentially be used to develop devices such as a thermal modulator, a thermal router, and a thermal amplifier for nanoelectronic devices and superconducting circuits.

6.
Phys Rev Lett ; 112(13): 133604, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745417

RESUMO

We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays.

7.
Sci Rep ; 3: 3378, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24287490

RESUMO

We combine matter-wave interferometry and cavity optomechanics to propose a coherent matter-light interface based on mechanical motion at the quantum level. We demonstrate a mechanism that is able to transfer non-classical features imprinted on the state of a matter-wave system to an optomechanical device, transducing them into distinctive interference fringes. This provides a reliable tool for the inference of quantum coherence in the particle beam. Moreover, we discuss how our system allows for intriguing perspectives, paving the way to the construction of a device for the encoding of quantum information in matter-wave systems. Our proposal, which highlights previously unforeseen possibilities for the synergistic exploitation of these two experimental platforms, is explicitly based on existing technology, available and widely used in current cutting-edge experiments.

8.
Phys Rev Lett ; 109(22): 223601, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23368118

RESUMO

We investigate the collective optomechanics of an ensemble of scatterers inside a Fabry-Pérot resonator and identify an optimized configuration where the ensemble is transmissive, in contrast to the usual reflective optomechanics approach. In this configuration, the optomechanical coupling of a specific collective mechanical mode can be several orders of magnitude larger than the single-element case, and long-range interactions can be generated between the different elements since light permeates throughout the array. This new regime should realistically allow for achieving strong single-photon optomechanical coupling with massive resonators, realizing hybrid quantum interfaces, and exploiting collective long-range interactions in arrays of atoms or mechanical oscillators.

9.
Phys Rev Lett ; 107(21): 213604, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181881

RESUMO

Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.

10.
Phys Rev Lett ; 105(1): 013602, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20867443

RESUMO

The fields in multiple-pass interferometers, such as the Fabry-Pérot cavity, exhibit great sensitivity not only to the presence but also to the motion of any scattering object within the optical path. We consider the general case of an interferometer comprising an arbitrary configuration of generic beam splitters and calculate the velocity-dependent radiation field and the light force exerted on a moving scatterer. We find that a simple configuration, in which the scatterer interacts with an optical resonator from which it is spatially separated, can enhance the optomechanical friction by several orders of magnitude.

11.
Opt Express ; 17(25): 23003-9, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20052226

RESUMO

We demonstrate a combined magneto-optical trap and imaging system that is suitable for the investigation of cold atoms near surfaces. In particular, we are able to trap atoms close to optically scattering surfaces and to image them with an excellent signal-to-noise ratio. We also demonstrate a simple magneto-optical atom cloud launching method. We anticipate that this system will be useful for a range of experimental studies of novel atom-surface interactions and atom trap miniaturization. .


Assuntos
Aumento da Imagem/métodos , Magnetismo/instrumentação , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Pinças Ópticas , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Magnetismo/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA