Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(2): 526-535, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38289021

RESUMO

The orthosomycins are highly modified oligosaccharide natural products with a broad spectrum and potent antimicrobial activities. These include everninomicins and avilamycins, which inhibit protein translation by binding a unique site on the bacterial ribosome. Notably, ribosomal bound structures reveal a network of interactions between the 50S subunit and dichloroisoeverninic acid (DCIE), the aromatic A1-ring conserved across orthosomycins, but the relationship of these interactions to their antimicrobial activity remains undetermined. Genetic functional analysis of three genes putatively associated with DCIE biosynthesis in the everninomicin producer Micromonospora carbonacea delineates the native biosynthetic pathway and provides previously unreported advanced biosynthetic intermediates. Subsequent in vitro biochemical analyses demonstrate the complete DCIE biosynthetic pathway and provide access to novel everninomicin analogs. In addition to the orsellinate synthase EvdD3 and a flavin-dependent halogenase EvdD2, our results identified a key acyltransferase, EvdD1, responsible for transferring orsellinate from the acyl carrier protein domain of EvdD3 to a heptasaccharide orthosomycin biosynthetic intermediate. We have also shown that EvdD1 is able to transfer unnatural aryl groups via their N-acyl cysteamine thioesters to the everninomicin scaffold and used this as a biocatalyst to generate a panel of unnatural aryl analogs. The impact of diverse aryl functional group substitution on both ribosome inhibition and antibacterial activities demonstrates the importance of the DCIE moiety in the pharmacology of orthosomycins, notably revealing an uncoupling between ribosomal engagement and antibiotic activity. Control of A1-ring functionality in this class of molecules provides a potential handle to explore and address pharmacological roles of the DCIE ring in this potent and unique class of antibiotics.


Assuntos
Antibacterianos , Parabenos , Antibacterianos/farmacologia , Oligossacarídeos/química , Vias Biossintéticas
2.
Chembiochem ; 21(23): 3349-3358, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686210

RESUMO

Everninomicins are orthoester oligosaccharide antibiotics with potent activity against multidrug-resistant bacterial pathogens. Everninomicins act by disrupting ribosomal assembly in a distinct region in comparison to clinically prescribed drugs. We employed microporous intergeneric conjugation with Escherichia coli to manipulate Micromonospora for targeted gene-replacement studies of multiple putative methyltransferases across the octasaccharide scaffold of everninomicin effecting the A1 , C, F, and H rings. Analyses of gene-replacement and genetic complementation mutants established the mutability of the everninomicin scaffold through the generation of 12 previously unreported analogues and, together with previous results, permitted assignment of the ten methyltransferases required for everninomicin biosynthesis. The in vitro activity of A1 - and H-ring-modifying methyltransferases demonstrated the ability to catalyze late-stage modification of the scaffold on an A1 -ring phenol and H-ring C-4' hydroxy moiety. Together these results establish the potential of the everninomicin scaffold for modification through mutagenesis and in vitro modification of advanced biosynthetic intermediates.


Assuntos
Antibacterianos/metabolismo , Metiltransferases/genética , Oligossacarídeos/genética , Antibacterianos/química , Metiltransferases/metabolismo , Micromonospora/química , Micromonospora/genética , Micromonospora/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo
3.
J Am Chem Soc ; 142(43): 18369-18377, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32709196

RESUMO

Many microorganisms possess the capacity for producing multiple antibiotic secondary metabolites. In a few notable cases, combinations of secondary metabolites produced by the same organism are used in important combination therapies for treatment of drug-resistant bacterial infections. However, examples of conjoined roles of bioactive metabolites produced by the same organism remain uncommon. During our genetic functional analysis of oxidase-encoding genes in the everninomicin producer Micromonospora carbonacea var. aurantiaca, we discovered previously uncharacterized antibiotics everninomicin N and O, comprised of an everninomicin fragment conjugated to the macrolide rosamicin via a rare nitrone moiety. These metabolites were determined to be hydrolysis products of everninomicin P, a nitrone-linked conjugate likely the result of nonenzymatic condensation of the rosamicin aldehyde and the octasaccharide everninomicin F, possessing a hydroxylamino sugar moiety. Rosamicin binds the erythromycin macrolide binding site approximately 60 Å from the orthosomycin binding site of everninomicins. However, while individual ribosomal binding sites for each functional half of everninomicin P are too distant for bidentate binding, ligand displacement studies demonstrated that everninomicin P competes with rosamicin for ribosomal binding. Chemical protection studies and structural analysis of everninomicin P revealed that everninomicin P occupies both the macrolide- and orthosomycin-binding sites on the 70S ribosome. Moreover, resistance mutations within each binding site were overcome by the inhibition of the opposite functional antibiotic moiety binding site. These data together demonstrate a strategy for coupling orthogonal antibiotic pharmacophores, a surprising tolerance for substantial covalent modification of each antibiotic, and a potential beneficial strategy to combat antibiotic resistance.


Assuntos
Óxidos de Nitrogênio/química , Ribossomos/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Eritromicina/química , Eritromicina/metabolismo , Leucomicinas/química , Leucomicinas/metabolismo , Micromonospora/genética , Família Multigênica , Óxidos de Nitrogênio/metabolismo
4.
J Med Chem ; 62(18): 8412-8428, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026161

RESUMO

Molecules isolated from natural sources including bacteria, fungi, and plants are a long-standing source of therapeutics that continue to add to our medicinal arsenal today. Despite their potency and prominence in the clinic, complex natural products often exhibit a number of liabilities that hinder their development as therapeutics, which may be partially responsible for the current trend away from natural product discovery, research, and development. However, advances in synthetic biology and organic synthesis have inspired a new generation of natural product chemists to tackle powerful undeveloped scaffolds. In this Perspective, we will present case studies demonstrating the historical and current focus on making targeted, but significant, changes to natural product scaffolds via biosynthetic gene cluster manipulation, total synthesis, semisynthesis, or a combination of these methods, with a focus on increasing activity, decreasing toxicity, or improving chemical and pharmacological properties.


Assuntos
Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Antibacterianos/farmacologia , Benzoquinonas/farmacologia , Linhagem Celular Tumoral , Química Orgânica , Química Farmacêutica/tendências , Glicopeptídeos/química , Humanos , Lactamas Macrocíclicas/farmacologia , Macrolídeos/farmacologia , Família Multigênica , Pactamicina/farmacologia , Peptídeos/farmacologia , Polienos/química , Biologia Sintética/tendências , Tetraciclinas/farmacologia
5.
Appl Environ Microbiol ; 84(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030223

RESUMO

Microorganisms within microbial communities respond to environmental challenges by producing biologically active secondary metabolites, yet the majority of these small molecules remain unidentified. We have previously demonstrated that secondary metabolite biosynthesis in actinomycetes can be activated by model environmental chemical and biological stimuli, and metabolites can be identified by comparative metabolomics analyses under different stimulus conditions. Here, we surveyed the secondary metabolite productivity of a group of 20 phylogenetically diverse actinobacteria isolated from hypogean (cave) environments by applying a battery of stimuli consisting of exposure to antibiotics, metals, and mixed microbial culture. Comparative metabolomics was used to reveal secondary metabolite responses from stimuli. These analyses revealed substantial changes in global metabolomic dynamics, with over 30% of metabolomic features increasing more than 10-fold under at least one stimulus condition. Selected features were isolated and identified via nuclear magnetic resonance (NMR), revealing several known secondary metabolite families, including the tetarimycins, aloesaponarins, hypogeamicins, actinomycins, and propeptins. One prioritized metabolite was identified to be a previously unreported aminopolyol polyketide, funisamine, produced by a cave isolate of Streptosporangium when exposed to mixed culture. The production of funisamine was most significantly increased in mixed culture with Bacillus species. The biosynthetic gene cluster responsible for the production of funisamine was identified via genomic sequencing of the producing strain, Streptosporangium sp. strain KDCAGE35, which facilitated a deduction of its biosynthesis. Together, these data demonstrate that comparative metabolomics can reveal the stimulus-induced production of natural products from diverse microbial phylogenies.IMPORTANCE Microbial secondary metabolites are an important source of biologically active and therapeutically relevant small molecules. However, much of this active molecular diversity is challenging to access due to low production levels or difficulty in discerning secondary metabolites within complex microbial extracts prior to isolation. Here, we demonstrate that ecological stimuli increase secondary metabolite production in phylogenetically diverse actinobacteria isolated from understudied hypogean environments. Additionally, we show that comparative metabolomics linking stimuli to metabolite response data can effectively reveal secondary metabolites within complex biological extracts. This approach highlighted secondary metabolites in almost all observed natural product classes, including low-abundance analogs of biologically relevant metabolites, as well as a new linear aminopolyol polyketide, funisamine. This study demonstrates the generality of activating stimuli to potentiate secondary metabolite production across diverse actinobacterial genera.


Assuntos
Actinobacteria/metabolismo , Cavernas/microbiologia , Metabolismo Secundário , Actinobacteria/química , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Genoma Bacteriano , Espectroscopia de Ressonância Magnética , Metabolômica , Família Multigênica , Filogenia , Policetídeos/química , Policetídeos/metabolismo
6.
RSC Adv ; 5: 8585-8590, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914807

RESUMO

We describe the synthesis and self-assembly of an asparagine-derived amphiphile. The self-assembled systems formulated with the inclusion of cholesterol (0-50 mol%) show encapsulation for a hydrophobic model drug and rapidly disintegrate in response to mild acidic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...