Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0236424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730292

RESUMO

Grapevines, although adapted to occasional drought or salt stress, are relatively sensitive to growth- and yield-limiting salinity stress. To understand the molecular mechanisms of salt tolerance and endoplasmic reticulum (ER) stress and identify genes commonly regulated by both stresses in grapevine, we investigated transcript profiles in leaves of the salt-tolerant grapevine rootstock 1616C under salt- and ER-stress. Among 1643 differentially expressed transcripts at 6 h post-treatment in leaves, 29 were unique to ER stress, 378 were unique to salt stress, and 16 were common to both stresses. At 24 h post-treatment, 243 transcripts were unique to ER stress, 1150 were unique to salt stress, and 168 were common to both stresses. GO term analysis identified genes in categories including 'oxidative stress', 'protein folding', 'transmembrane transport', 'protein phosphorylation', 'lipid transport', 'proteolysis', 'photosynthesis', and 'regulation of transcription'. The expression of genes encoding transporters, transcription factors, and proteins involved in hormone biosynthesis increased in response to both ER and salt stresses. KEGG pathway analysis of differentially expressed genes for both ER and salt stress were divided into four main categories including; carbohydrate metabolism, amino acid metabolism, signal transduction and lipid metabolism. Differential expression of several genes was confirmed by qRT-PCR analysis, which validated our microarray results. We identified transcripts for genes that might be involved in salt tolerance and also many genes differentially expressed under both ER and salt stresses. Our results could provide new insights into the mechanisms of salt tolerance and ER stress in plants and should be useful for genetic improvement of salt tolerance in grapevine.


Assuntos
Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/genética , Estresse Salino/genética , Vitis/genética , Metabolismo dos Carboidratos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/metabolismo , Tunicamicina/farmacologia
2.
Sci Rep ; 10(1): 4129, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139777

RESUMO

Beet necrotic yellow vein virus (BNYVV) is the cause of rhizomania, an important disease of sugar beet around the world. The multipartite genome of the BNYVV contains four or five single-stranded RNA that has been used to characterize the virus. Understanding genome composition of the virus not only determines the degree of pathogenicity but also is required to development of resistant varieties of sugar beet. Resistance to rhizomania has been conferred to sugar beet varieties by conventional breeding methods or modern genome engineering tools. However, over time, viruses undergo genetic alterations and develop new variants to break crop resistance. Here, we report the occurrence of genetic reassortment and emergence of new variants of BNYVV among the isolates of Thrace and Asia Minor (modern-day Turkey). Our findings indicate that the isolates harbor European A-type RNA-2 and RNA-3, nevertheless, RNA-5 is closely related to East Asian J-type. Furthermore, RNA-1 and RNA-4 are either derived from A, B, and P-types or a mixture of them. The RNA-5 factor which enhance the pathogenicity, is rarely found in the isolates studied (20%). The creation of new variants of the virus emphasizes the necessity to develop new generation of resistant crops. We anticipate that these findings will be useful for future genetic characterization and evolutionary studies of BNYVV, as well as for developing sustainable strategies for the control of this destructive disease.


Assuntos
Beta vulgaris/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Vírus de RNA/patogenicidade , Beta vulgaris/genética , Ensaio de Imunoadsorção Enzimática , Doenças das Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Gene ; 723: 144149, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31589959

RESUMO

The origin of the apple is known to be the Transcaucasian region. Eastern Anatolia, which is located on the migration routes from Asia to Europe, has a rich and an uncharacterized apple germplasm and the characterization of apple genetic sources from this region is important for both evolutionary studies and apple breeding. In this study, 94 M. domestica accessions originated from seven diverse regions within Eastern Anatolia were studied using 16 SSR (simple sequence repeat) loci. SSR markers we used produced high allele numbers in all loci and CH02d11 (PI: 0.059) with 18 alleles was the most informative locus. In addition, 14 identical accession groups were identified. Most likely due to self-incompatibility, relatively high levels of heterozygosity (Ho: 0.696) was found for Eastern Anatolia apples. Structure Harvester analyses of East Anatolian apple accessions showed that although each group seems to be somewhat distinct, some levels of admixture with other populations might also exist. Due to a significant gene flow between all pairs of seven apple populations, a limited (low) differentiation was found between the populations. Comparisons using 16 common SSR loci revealed that Eastern Anatolia accessions were genetically different from Anatolian accessions. In addition, based on FCA, and Nei's genetic distance analyses, Eastern Anatolian apples were found to be genetically different from the commercial apple cultivars Golden Delicious and Florina. Our results suggesting that Eastern Anatolia apple populations have a unique structure will be useful for future genetic and evolutionary studies on apples.


Assuntos
Malus/genética , Repetições de Microssatélites , Fluxo Gênico , Frequência do Gene , Genética Populacional , Filogenia , Turquia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...