Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123974, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377639

RESUMO

Fish epidermal mucus is an important reservoir of antipathogenic compounds which serves as the first line of the immune defence. Despite its significant role in the physiology and health of fish, detailed profiling of fish epidermal mucus has yet to be explored. Therefore, this study investigates a label-free colloidal surface-enhanced Raman spectroscopic (SERS) method for profiling grouper mucus. Gold nanoparticles were first synthesised using the standard citrate reduction and characterised using ultraviolet-visible spectroscopy, transmission electron microscopy and dynamic light scattering. The influence of acidified sodium sulphate (Na2SO4) at pH 3 as the aggregating agent on the enhancement of the SERS spectrum of different analyte samples including rhodamine 6G (R6G) dye, lysozyme solution and hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) mucus was observed. Based on the results, an optimal Na2SO4 concentration of 1 M was recorded to achieve the highest enhancement of the SERS signal for R6G and grouper mucus, while the optimal concentration for lysozyme was 0.1 M. The results indicated a higher degree of aggregation induced by lysozyme than R6G and grouper mucus. A few overlapping peaks of the SERS spectra of lysozyme and grouper mucus made it possible to confirm the presence of lysozyme as potential biomarkers.


Assuntos
Bass , Nanopartículas Metálicas , Sulfatos , Animais , Nanopartículas Metálicas/química , Muramidase , Ouro/química , Análise Espectral Raman/métodos
2.
Biosensors (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36832036

RESUMO

Biosensors are central to diagnostic and medicinal applications, especially in terms of monitoring, managing illness, and public health. Microfiber-based biosensors are known to be capable of measuring both the presence and behavior of biological molecules in a highly sensitive manner. In addition, the flexibility of microfiber in supporting a variety of sensing layer designs and the integration of nanomaterials with biorecognition molecules brings immense opportunity for specificity enhancement. This review paper aims to discuss and explore different microfiber configurations by highlighting their fundamental concepts, fabrication processes, and performance as biosensors.


Assuntos
Técnicas Biossensoriais , Nanoestruturas
3.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431654

RESUMO

Gaseous pollutants such as hydrogen gas (H2) are emitted in daily human activities. They have been massively studied owing to their high explosivity and widespread usage in many domains. The current research is designed to analyse optical fiber-based H2 gas sensors by incorporating palladium/graphene oxide (Pd/GO) nanocomposite coating as sensing layers. The fabricated multimode silica fiber (MMF) sensors were used as a transducing platform. The tapering process is essential to improve the sensitivity to the environment through the interaction of the evanescent field over the area of the tapered surface area. Several characterization methods including FESEM, EDX, AFM, and XRD were adopted to examine the structure properties of the materials and achieve more understandable facts about their functional performance of the optical sensor. Characterisation results demonstrated structures with a higher surface for analyte gas reaction to the optical sensor performance. Results indicated an observed increment in the Pd/GO nanocomposite-based sensor responses subjected to the H2 concentrations increased from 0.125% to 2.00%. The achieved sensitivities were 33.22/vol% with a response time of 48 s and recovery time of 7 min. The developed optical fiber sensors achieved excellent selectivity and stability toward H2 gas upon exposure to other gases such as ammonia and methane.

4.
Polymers (Basel) ; 14(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35567075

RESUMO

Chlorine gas is extensively utilised in industries as both a disinfectant and for wastewater treatment. It has a pungent and irritating odour that is comparable with that of bleach and can cause serious health issues such as headaches and breathing difficulties. Hence, efficiently, and accurately monitoring chlorine gas is critical to ensure that no undesirable incidents occur. Due to its remarkable characteristics, numerous researchers have explored the potential of ferrite nanoparticles as a sensing material for chlorine gas detection. Among several ferrite nanoparticles, nickel ferrite (NiFe2O4) is extensively studied as an inverse spinel structured magnetic material that may be ideal for sensing applications. However, the magnetic characteristics of NiFe2O4 cause agglomeration, which necessitates the use of a substrate for stabilisation. Therefore, nanocellulose (NC), as a green and eco-friendly substrate, is ideal for stabilising bare nickel ferrite nanoparticles. In a novel experiment, nickel ferrite was loaded onto NC as a substrate using in situ deposition. The structure was confirmed by X-ray Diffraction (XRD) analysis, while elemental composition was verified by Energy dispersive X-ray (EDX) analysis. Gas sensing properties were determined by evaluating sensitivity as a function of various regulating factors, such as the amount of nickel ferrite, gas concentration, repeatability, and reusability. In the evaluation, 0.3 g nickel ferrite showed superior response and sensitivity than those of other samples. The achieved response time was around 40 s, while recovery time was about 50 s. This study demonstrates the potential of a nickel ferrite/nanocellulose-based nanocomposite to efficiently monitor chlorine gas.

5.
Polymers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34641067

RESUMO

The wide availability and diversity of dangerous microbes poses a considerable problem for health professionals and in the development of new healthcare products. Numerous studies have been conducted to develop membrane filters that have antibacterial properties to solve this problem. Without proper protective filter equipment, healthcare providers, essential workers, and the general public are exposed to the risk of infection. A combination of nanotechnology and biosorption is expected to offer a new and greener approach to improve the usefulness of polysaccharides as an advanced membrane filtration material. Nanocellulose is among the emerging materials of this century and several studies have proven its use in filtering microbes. Its high specific surface area enables the adsorption of various microbial species, and its innate porosity can separate various molecules and retain microbial objects. Besides this, the presence of an abundant OH groups in nanocellulose grants its unique surface modification, which can increase its filtration efficiency through the formation of affinity interactions toward microbes. In this review, an update of the most relevant uses of nanocellulose as a new class of membrane filters against microbes is outlined. Key advancements in surface modifications of nanocellulose to enhance its rejection mechanism are also critically discussed. To the best of our knowledge, this is the first review focusing on the development of nanocellulose as a membrane filter against microbes.

6.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466822

RESUMO

Ammonia detection in ambient air is critical, given its implication on the environment and human health. In this work, an optical fiber tapered to a 20 µm diameter and coated with graphene oxide was developed for absorbance response monitoring of ammonia at visible (500-700 nm) and near-infrared wavelength regions (700-900 nm). The morphology, surface characteristics, and chemical composition of the graphene oxide samples were confirmed by a field emission scanning electron microscope, an atomic force microscope, X-ray diffraction, and an energy dispersion X-ray. The sensing performance of the graphene oxide-coated optical microfiber sensor towards ammonia at room temperature revealed better absorbance response at the near-infrared wavelength region compared to the visible region. The sensitivity, response and recovery times at the near-infrared wavelength region were 61.78 AU/%, 385 s, and 288 s, respectively. The sensitivity, response and recovery times at the visible wavelength region were 26.99 AU/%, 497 s, and 192 s, respectively. The selectivity of the sensor towards ammonia was affirmed with no response towards other gases.

7.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825539

RESUMO

The need for environmental protection and water pollution control has led to the development of different sensors for determining many kinds of pollutants in water. Ammonia nitrogen presence is an important indicator of water quality in environmental monitoring applications. In this paper, a high sensitivity sensor for monitoring ammonia nitrogen concentration in water using a tapered microfiber interferometer (MFI) as a sensor platform and a broad supercontinuum laser as the light source is realized. The MFI is fabricated to the waist diameter of 8 µm producing a strong interference pattern due to the coupling of the fundamental mode with the cladding mode. The MFI sensor is investigated for a low concentration of ammonia nitrogen in water in the wide wavelength range from 1500-1800 nm with a high-power signal provided by the supercontinuum source. The broad source allows optical sensing characteristics of the MFI to be evaluated at four different wavelengths (1505, 1605, 1705, and 1785 nm) upon exposure towards various ammonia nitrogen concentrations. The highest sensitivity of 0.099 nm/ppm that indicates the wavelength shift is observed at 1785 nm operating wavelength. The response is linear in the ammonia nitrogen range of 5-30 ppm with the best measurement resolution calculated to be 0.5 ppm. The low concentration ammonia nitrogen detected by the MFI in the unique infrared region reveals the potential application of this optical fiber-based sensor for rivers and drinking water monitoring.

8.
Sci Rep ; 9(1): 13483, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530893

RESUMO

The exponential escalation of dengue cases has indeed become a global health crisis. This work elaborates on the development of a biofunctionalized tapered optical fiber (TOF) based sensor with the integration of polyamidoamine (PAMAM) dendrimer for the detection of dengue E protein. The dimension of the TOF generated an evanescent field that was sensitive to any changes in the external medium while the integration of PAMAM promoted more adhesion of bio-recognition molecules; anti-DENV II E protein antibodies; that were complementary to the targeted protein. This in return created more active sites for the absorption of DENV II E proteins onto the tapered region. The resolution and detection limit of the sensor are 19.53 nm/nM and 1 pM, respectively with Kd = 1.02 × 10-10 M.


Assuntos
Técnicas Biossensoriais , Dendrímeros , Dengue/diagnóstico , Fibras Ópticas , Bioengenharia , Dengue/virologia , Vírus da Dengue , Feminino , Humanos , Masculino , Microscopia de Força Atômica , Análise Espectral Raman , Proteínas Virais/análise
9.
Biosensors (Basel) ; 9(1)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875829

RESUMO

This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2⁻24 s and a flow rate range of 1.2⁻9.6 µ L min - 1 . The frequency and voltage were set to a constant value of 1 M Hz and 14 V pk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 µ L min - 1 at a constant frequency, voltage, and a low conductivity.


Assuntos
Separação Celular/métodos , Escherichia coli/citologia , Tecnologia de Fibra Óptica/métodos , Microfluídica/métodos , Saccharomyces cerevisiae/citologia , Separação Celular/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Microfluídica/instrumentação
10.
Opt Lett ; 44(2): 307-310, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644887

RESUMO

We present a laser phase noise (PN) induced effect of a phase-modulation-to-intensity-modulation conversion noise and noise pedestals underneath each of the orthogonal frequency division multiplexing (OFDM) subcarriers in a self-coherent optical OFDM transmission using a self-homodyne technique. We provide a statistical analysis on the received symbols using a histogram to demonstrate the effect of a phase rotation term and inter-subcarrier interference individually and collectively. The PN is then compensated using a simple time delay to realign the phase walk-off of the subcarriers relative to the carrier. Significant quadrature improvements of 6.82 dB using 5 MHz laser linewidth over a 720 km transmission length and 5.38 dB using 20 MHz over 240 km have been obtained with 16 quadrature amplitude modulation (QAM) over 15 GHz OFDM signal bandwidth. The technique also significantly reduced an optical-signal-to-noise ratio requirement at the bit error rate of 1×10-3 by 16.15 dB for 64-QAM over 160 km. With the delay, the system can tolerate three times the chromatic dispersion-length product.

11.
Sensors (Basel) ; 15(3): 4749-65, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25730480

RESUMO

A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW) resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...