Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Commun ; 43(10): 1067-1076, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081398

RESUMO

OBJECTIVE: The R value is adopted as a metric for the effectiveness of the respiratory waveform in the Advanced Motion Free implemented in the PET scanner as the data-driven respiratory gating (DDG) algorithm. The effects of changes in various factors on R values were evaluated by phantom analysis. METHODS: We used a programmable respiratory motion phantom QUASAR with a sphere filled with an 18F solution. Respiratory motion simulation was performed by changing the sphere diameter, radioactivity concentration, amplitude, respiratory cycle, and respiratory waveform shape. Three evaluations were performed. (1) The power spectra calculated from the input waveforms were evaluated. (2) The effects of changes in the factors on the R value were evaluated. (3) DDG waveforms and inspiratory peak intervals were compared with the input waveform data set. RESULTS: The R values were increased and converged to a certain value as sphere diameter, radioactivity concentration, and amplitude gradually increased. The respiratory cycle showed the highest R value at 7.5 s, and the graph showed an upward convex pattern. The R value of the sinusoid waveform was higher than that of the typical waveform. There was a relationship between the power spectrum of the input waveform and R value. The visual score was also lower in the condition with a lower R value. In cases of no sphere, radioactivity, or motion, and a fast respiratory cycle, peak intervals were not accurately acquired. CONCLUSIONS: Factors affecting the R value were sphere diameter, radioactivity concentration, amplitude, respiratory cycle, and respiratory waveform shape.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Movimento (Física) , Imagens de Fantasmas
2.
Artigo em Japonês | MEDLINE | ID: mdl-34305056

RESUMO

PURPOSE: Quantitative analysis using a standardized uptake value (SUV) has become possible for single-photon emission computed tomography-computed tomography (SPECT-CT) of bone. However, previous research was targeted to the trunk area, and there are few studies for the head and neck region. Therefore, the purpose of this study was to determine the optimal image reconstruction conditions for bone SPECT of the head and neck using a phantom study. METHOD: The radioactivity concentration of the 99mTc solution enclosed in the cylindrical phantom was set to the same count rate as in clinical cases, and six hot spheres (10, 13, 17, 22, 28, 37 mm) with four times the concentration were placed within it. The image reconstruction was 3D-OSEM, and the reconstruction conditions were varied by the number of iterative updates and the width of the Gaussian filter. Quantitative evaluations of the image quality were performed using the % contrast, background variability, and SUV for the hot spheres and background. A visual evaluation was performed by four observers to determine the optimal image reconstruction conditions for bone SPECT of the head and neck region. RESULT: The concentration of the 99mTc solution enclosed in the phantom was 6.95 (kBq/ml). Based on the results of the quantitative and visual evaluations, the optimal image reconstruction conditions were iterative updates=60 (subset: 10, iteration: 6) and a Gaussian filter of 7.8 mm. CONCLUSION: The optimal image reconstruction conditions were subset=10, iterations=6, and a Gaussian filter of 7.8 mm.


Assuntos
Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada de Emissão de Fóton Único , Processamento de Imagem Assistida por Computador , Pescoço/diagnóstico por imagem , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...