Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 20994, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697326

RESUMO

Sleep deprivation (SD) is a common condition and an important health concern. In addition to metabolic and cardiovascular risks, SD associates with decreases in cognitive performance. Neurovascular coupling (NVC, "functional hyperemia") is a critical homeostatic mechanism, which maintains adequate blood supply to the brain during periods of intensive neuronal activity. To determine whether SD alters NVC responses and cognitive performance, cognitive and hemodynamic NVC assessments were conducted prior to and 24 h post-SD in healthy young male individuals (n = 10, 27 ± 3 years old). Cognition was evaluated with a battery of tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Hemodynamic components of NVC were measured by transcranial Doppler sonography (TCD) during cognitive stimulation, dynamic retinal vessel analysis (DVA) during flicker light stimulation, and functional near infrared spectroscopy (fNIRS) during finger tapping motor task. Cognitive assessments revealed impairments in reaction time and sustained attention after 24 h of SD. Functional NIRS analysis revealed that SD significantly altered hemodynamic responses in the prefrontal cortex and somatosensory cortex during a motor task. NVC-related vascular responses measured by DVA and TCD did not change significantly. Interestingly, TCD detected decreased task-associated cerebral blood flow (CBF) in the right middle cerebral artery in sleep deprived participants. Our results demonstrate that 24 h of SD lead to impairments in cognitive performance together with altered CBF and hemodynamic components of cortical NVC responses.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Circulação Cerebrovascular , Cognição , Hemodinâmica , Acoplamento Neurovascular , Privação do Sono/complicações , Adulto , Estudos de Casos e Controles , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiopatologia , Feminino , Humanos , Masculino , Neurônios/metabolismo , Tempo de Reação , Espectroscopia de Luz Próxima ao Infravermelho , Ultrassonografia Doppler Transcraniana , Adulto Jovem
2.
PLoS One ; 16(5): e0250043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010279

RESUMO

Understanding how the brain allocates resources to match the demands of active neurons under physiological conditions is critically important. Increased metabolic demands of active brain regions are matched with hemodynamic responses known as neurovascular coupling (NVC). Several methods that allow noninvasive assessment of brain activity in humans detect NVC and early detection of NVC impairment may serve as an early marker of cognitive impairment. Therefore, non-invasive NVC assessments may serve as a valuable tool to detect early signs of cognitive impairment and dementia. Working memory tasks are routinely employed in the evaluation of cognitive task-evoked NVC responses. However, recent attempts that utilized functional near-infrared spectroscopy (fNIRS) or transcranial Doppler sonography (TCD) while using a similar working memory paradigm did not provide convincing evidence for the correlation of the hemodynamic variables measured by these two methods. In the current study, we aimed to compare fNIRS and TCD in their performance of differentiating NVC responses evoked by different levels of working memory workload during the same working memory task used as cognitive stimulation. Fourteen healthy young individuals were recruited for this study and performed an n-back cognitive test during TCD and fNIRS monitoring. During TCD monitoring, the middle cerebral artery (MCA) flow was bilaterally increased during the task associated with greater cognitive effort. fNIRS also detected significantly increased activation during a more challenging task in the left dorsolateral prefrontal cortex (DLPFC), and in addition, widespread activation of the medial prefrontal cortex (mPFC) was also revealed. Robust changes in prefrontal cortex hemodynamics may explain the profound change in MCA blood flow during the same cognitive task. Overall, our data support our hypothesis that both TCD and fNIRS methods can discriminate NVC evoked by higher demand tasks compared to baseline or lower demand tasks.


Assuntos
Cognição , Acoplamento Neurovascular , Adulto , Feminino , Hemodinâmica , Humanos , Masculino , Memória de Curto Prazo , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiologia , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia
3.
Geroscience ; 41(5): 495-509, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31676966

RESUMO

Preclinical studies provide strong evidence that age-related impairment of neurovascular coupling (NVC) plays a causal role in the pathogenesis of vascular cognitive impairment (VCI). NVC is a critical homeostatic mechanism in the brain, responsible for adjustment of local cerebral blood flow to the energetic needs of the active neuronal tissue. Recent progress in geroscience has led to the identification of critical cellular and molecular mechanisms involved in neurovascular aging, identifying these pathways as targets for intervention. In order to translate the preclinical findings to humans, there is a need to assess NVC in geriatric patients as an endpoint in clinical studies. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that enables the investigation of local changes in cerebral blood flow, quantifying task-related changes in oxygenated and deoxygenated hemoglobin concentrations. In the present overview, the basic principles of fNIRS are introduced and the application of this technique to assess NVC in older adults with implications for the design of studies on the mechanistic underpinnings of VCI is discussed.


Assuntos
Envelhecimento/fisiologia , Circulação Cerebrovascular/fisiologia , Acoplamento Neurovascular/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Idoso , Mapeamento Encefálico , Demência Vascular/diagnóstico , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
4.
Geroscience ; 41(3): 341-349, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31209739

RESUMO

Aging is a major risk factor for vascular cognitive impairment and dementia (VCID). Recent studies demonstrate that cerebromicrovascular dysfunction plays a causal role in the development of age-related cognitive impairment, in part via disruption of neurovascular coupling (NVC) responses. NVC (functional hyperemia) is responsible for adjusting cerebral blood flow to the increased energetic demands of activated neurons, and in preclinical animal models of aging, pharmacological restoration of NVC is associated with improved cognitive performance. To translate these findings, there is an increasing need to develop novel and sensitive tools to assess cerebromicrovascular function and NVC to assess risk for VCID and evaluate treatment efficacy. Due to shared developmental origins, anatomical features, and physiology, assessment of retinal vessel function may serve as an important surrogate outcome measure to study neurovascular dysfunction. The present study was designed to compare NVC responses in young (< 45 years of age; n = 18) and aged (> 65 years of age; n = 11) healthy human subjects by assessing flicker light-induced changes in the diameter of retinal arterioles using a dynamic vessel analyzer (DVA)-based approach. We found that NVC responses in retinal arterioles were significantly decreased in older adults as compared with younger subjects. We propose that the DVA-based approach can be used to assess NVC, as a surrogate cerebromicrovascular outcome measure, to evaluate the effects of therapeutic interventions in older individuals.


Assuntos
Envelhecimento/fisiologia , Acoplamento Neurovascular/fisiologia , Estimulação Luminosa , Artéria Retiniana/fisiologia , Vasodilatação/fisiologia , Percepção Visual/fisiologia , Adulto , Idoso , Arteríolas/fisiopatologia , Encéfalo/irrigação sanguínea , Estudos de Coortes , Demência Vascular/fisiopatologia , Feminino , Humanos , Masculino , Microcirculação/fisiologia , Pessoa de Meia-Idade , Valores de Referência , Adulto Jovem
5.
Geroscience ; 41(2): 125-136, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31030329

RESUMO

Preclinical studies demonstrate that generalized endothelial cell dysfunction and microvascular impairment are potentially reversible causes of age-related vascular cognitive impairment and dementia (VCID). The present study was designed to test the hypothesis that severity of age-related macro- and microvascular dysfunction measured in the peripheral circulation is an independent predictor of cognitive performance in older adults. In this study, we enrolled 63 healthy individuals into young (< 45 years old) and aged (> 65 years old) groups. We used principal component analysis (PCA) to construct a comprehensive peripheral vascular health index (VHI) encompassing peripheral microvascular reactivity, arterial endothelial function, and vascular stiffness, as a marker of aging-induced generalized vascular dysfunction. Peripheral macrovascular and microvascular endothelial function were assessed using flow-mediated dilation (FMD) and laser speckle contrast imaging tests. Pulse waveform analysis was used to evaluate the augmentation index (AIx), a measure of arterial stiffness. Cognitive function was measured using a panel of CANTAB cognitive tests, and PCA was then applied to generate a cognitive impairment index (CII) for each participant. Aged subjects exhibited significantly impaired macrovascular endothelial function (FMD, 5.6 ± 0.7% vs. 8.3 ± 0.6% in young, p = 0.0061), increased arterial stiffness (AIx 29.3 ± 1.8% vs 4.5 ± 2.6% in young, p < 0.0001), and microvascular dysfunction (2.8 ± 0.2 vs 3.4 ± 0.1-fold change of perfusion in young, p = 0.032). VHI showed a significant negative correlation with age (r = - 0.54, p < 0.0001) and CII significantly correlated with age (r = 0.79, p < 0.0001). VHI significantly correlated with the CII (r = - 0.46, p = 0.0003). A decline in peripheral vascular health may reflect generalized vascular dysfunction and predict cognitive impairment in older adults.


Assuntos
Envelhecimento/fisiologia , Disfunção Cognitiva/fisiopatologia , Doenças Vasculares Periféricas/patologia , Rigidez Vascular , Adulto , Fatores Etários , Idoso , Estudos de Coortes , Endotélio Vascular/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Vasculares Periféricas/fisiopatologia , Valor Preditivo dos Testes , Estudos Prospectivos , Análise de Onda de Pulso , Medição de Risco , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...