Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anal Methods Chem ; 2022: 5335936, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558651

RESUMO

Falsified drugs are of serious concern to public health worldwide, particularly for developing countries where quality control of drugs is inefficient. In law enforcement against such fake medicines, there is a need to develop reliable, fast, and inexpensive screening methods. In this work, the ability of an innovative low-cost handheld near-infrared spectrometer to identify falsifications among two antimalarial fixed dose combination tablets, dihydroartemisinin/piperaquine and sulfadoxine/pyrimethamine, has been investigated. Analyzed samples were collected in Burkina Faso mainly in rural transborder areas that could be infiltrated by illicit drugs. A principal component analysis was applied on the acquired near-infrared spectra to identify trends, similarities, and differences between collected samples. This allowed to detect some samples of dihydroartemisinin/piperaquine and sulfadoxine/pyrimethamine which seemed to be falsified. These suspicious samples were semiquantitatively analyzed by thin-layer chromatography using Minalab® kits. Obtained results allowed to confirm the falsifications since the suspected samples did not contain any of the expected active pharmaceutical ingredients. The capacity of the low-cost near-infrared device to identify specifically a brand name of dihydroartemisinin/piperaquine or sulfadoxine/pyrimethamine has been also studied using soft independent modelling of class analogy (SIMCA) in the classical and data driven versions. The built models allowed a clear brand identification with 100% of both sensitivity and specificity in the studied cases. All these results demonstrate the potential of these low-cost near-infrared spectrometers to be used as first line screening tools, particularly in resource limited laboratories, for the detection of falsified antimalarial drugs.

2.
J Anal Methods Chem ; 2021: 4093859, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691802

RESUMO

In substandard drugs enforcement, there is a need to develop reliable, fast, and inexpensive analytical methods. Due to its very characteristics, HPTLC offers opportunities for the development of methods that meet these requirements. This technique was used to develop and validate a method for the determination of sildenafil in pharmaceutical formulations from the licit and illicit supply chain in Burkina Faso. Taking into account optimization parameters such as measurement wavelength and mobile phase composition, the best elution quality is found at the maximum signals of spots on silica plates at 305 nm, using a mixture of dichloromethane-methanol mixture 9 : 1 (v/v) proportions. The method developed under these conditions was validated using the accuracy profile as a decision tool. The establishment of the response function curves allowed the choice of the polynomial function applied to the peak areas. This mathematical model provides a validity range between 0.4 and 0.6 mg/mL. The application of the developed and validated method to collected samples allowed the detection of two substandard drugs and confirmed the poor quality of drugs in the illicit market. More data using this approach in a variety of drug molecules could lead to the establishment of databases of counterfeit drugs in Burkina Faso.

3.
J Sep Sci ; 43(24): 4390-4404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33058440

RESUMO

A green analytical chemistry strategy is described to develop a reversed-phase high-performance liquid chromatography method for amodiaquine and artesunate analysis using ethanol-based mobile phases. This method development was particularly challenging due to the basicity of amodiaquine and low UV absorption of artesunate, leading to peak asymmetry and detection issues, respectively. UV detection concern was even more challenging due to the baseline drift observed with ethanol in gradient mode. Several green pH modifiers were selected for their ecofriendly character and their impact on peak shape and detection was investigated. The screening of various stationary phases (19 columns) appeared as a relevant and necessary approach to reach satisfactory peak shape of basic compounds. To support the results of this study, some additional compounds related to artesunate and amodiaquine structures were included. Methods were optimized and validated using total error approach with a mobile phase composed of ethanol and 10 mM formic acid using three different stationary phases from different manufacturers, providing flexibility of the quality control approach. Method greenness was assessed using the National Environmental Methods Index, the Green Analytical Procedure Index, and the Analytical Eco-Scale. Finally, artesunate and amodiaquine were successfully analyzed in fixed dose combination tablets.


Assuntos
Amodiaquina/análise , Artesunato/análise , Química Verde , Cromatografia Líquida de Alta Pressão , Humanos
4.
J Pharm Biomed Anal ; 190: 113507, 2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-32846400

RESUMO

Greening analytical methods has become of great interest in the field of pharmaceutical analysis to protect both the operators' health and the environment. In this work, an innovative methodology combining Quality-by-Design (QbD) and Green Chemistry principles was followed to develop a single, green and robust RP-HPLC method for the quantitative analysis of impurities of both artesunate and amodiaquine drugs. Ethanol was selected as the best ecofriendly alternative solvent in substitution to the commonly used organic solvents such as acetonitrile and methanol. To achieve method objectives, resolutions between the 10 peaks were chosen as critical method attributes (CMAs) to be optimized through QbD approach. Based on a quality risk assessment, pH, temperature, and gradient slope were then selected as critical method parameters (CMPs) and a three level full factorial design was used to model the CMAs as function of the CMPs. Response surface methodology associated to Monte Carlo simulations allowed to determine the method operable domain region (MODR), i.e., the multidimensional combination of CMPs where CMAs simultaneously satisfied specifications (Rs ≥ 1.5) with a probability at least equal to 95 %. Inside the MODR, the working point was chosen based on green criteria, involving a mobile phase composed of ethanol and 10 mM acetic acid only as pH modifier. The method was successfully validated for all impurities using accuracy profile methodology, which was fully compliant with the ICH Q2(R1) requirements. Finally, the method was applied to the analysis of amodiaquine and artesunate impurities in raw materials and formulations.


Assuntos
Amodiaquina , Artesunato , Cromatografia Líquida de Alta Pressão , Amodiaquina/análise , Artesunato/análise , Método de Monte Carlo , Solventes
5.
Molecules ; 25(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727052

RESUMO

Two green analytical approaches have been developed for the analysis of antimalarial fixed dose tablets of artemether and lumefantrine for quality control. The first approach consisted of investigating the qualitative performance of a low-cost handheld near-infrared spectrometer in combination with the principal component analysis as an exploratory tool to identify trends, similarities, and differences between pharmaceutical samples, before applying the data driven soft independent modeling of class analogy (DD-SIMCA) as a one-class classifier for proper drug falsification detection with 100% of both sensitivity and specificity in the studied cases. Despite its limited spectral range and low resolution, the handheld device allowed detecting falsified drugs with no active pharmaceutical ingredient and identifying specifically a pharmaceutical tablet brand name. The second approach was the quantitative analysis based on the green and fast RP-HPLC technique using ethanol as a green organic solvent and acetic acid as a green pH modifier. The optimal separation was achieved in 7 min using a mobile phase composed of ethanol 96% and 10 mM of acetic acid pH 3.35 (63:37, v/v). The developed method was validated according to the total error approach based on an accuracy profile, was applied to the analysis of tablets, and allowed confirming falsified drugs detected by spectroscopy.


Assuntos
Antimaláricos/análise , Combinação Arteméter e Lumefantrina/análise , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos Falsificados/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Contaminação de Medicamentos/prevenção & controle , Controle de Qualidade , Comprimidos/química
6.
Molecules ; 23(5)2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29724076

RESUMO

The greening of analytical methods has gained increasing interest in the field of pharmaceutical analysis to reduce environmental impacts and improve the health safety of analysts. Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most widely used analytical technique involved in pharmaceutical drug development and manufacturing, such as the quality control of bulk drugs and pharmaceutical formulations, as well as the analysis of drugs in biological samples. However, RP-HPLC methods commonly use large amounts of organic solvents and generate high quantities of waste to be disposed, leading to some issues in terms of ecological impact and operator safety. In this context, greening HPLC methods is becoming highly desirable. One strategy to reduce the impact of hazardous solvents is to replace classically used organic solvents (i.e., acetonitrile and methanol) with greener ones. So far, ethanol has been the most often used alternative organic solvent. Others strategies have followed, such as the use of totally aqueous mobile phases, micellar liquid chromatography, and ionic liquids. These approaches have been well developed, as they do not require equipment investments and are rather economical. This review describes and critically discusses the recent advances in greening RP-HPLC methods dedicated to pharmaceutical analysis based on the use of alternative solvents.


Assuntos
Cromatografia de Fase Reversa/métodos , Etanol/química , Preparações Farmacêuticas/química , Solventes/química , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...